
Systems Concepts and Modeling

Chapter 2 – Lecture 1

1

Objectives

 Context models

 Interaction models

 Structural models

 Behavioral models

Model-driven engineering

2

System Modeling

 System modeling is the process of developing abstract

models of a system, with each model presenting a different

view or perspective of that system.

 System modeling now usually means representing a system

using some kind of graphical notation based on diagram

types in the Unified Modeling Language (UML).

Models are used during:

– the requirements engineering process to help derive the

detailed requirements for a system

– the design process to describe the system to engineers

implementing the system and

– after implementation to document the system’s structure and

operation
3

4

A System: General Properties
Made up of components, both physical and conceptual

 Receives inputs and transforms these into outputs

 Exists within an environment (collection of hardware and
software tools used to build software system).

 Boundary divides things inside the system from things
outside

 Exhibits behavior (working/functionality)

 Fulfils some specific purpose which varies according to
particular viewpointsExample of a System: Company Payroll
Key Inputs: employee information

Key outputs: payslips, cheques, cash

 Physical components: people, paper computers

Conceptual components: basic salary

Systems: Definition

A system is an assembly of components, connected together in
an organized way and separated from its environment by a
boundary. This organized assembly has an observable purpose
which is characterized by how it transforms inputs from the
environment into outputs to the environment.

A system with no inputs or outputs is closed.

5

Software components

 Files

 Subroutines

 Library functions

 Classes

 Packages

6

Component dependency

Component A depends on B
A change to B may require a change to A
Many types of component dependency

A B

Modeling in Design

 The field of software engineering now incorporates object-

oriented concepts and techniques, by which a system is

viewed as a collection of self-contained objects that include

both data and processes.

 Objects can be built as individual pieces and then put

together to form a system, leading to modular, reusable

project components.

 In 1997, the Unified Modeling Language (UML) was

accepted as the standard language for object development.

 Some types of models support the analysis process

– Class diagrams

– Use case diagrams

– Activity Diagrams

7

What is “object-oriented”?

 The object-oriented approach views a software system as a

collection of self-contained objects, including both data and

processes.

 Object-oriented systems focus on capturing the structure and

behavior of software systems in modules (objects) that encompass

both data and processes.

 Unified Modeling Language (UML) was accepted as the standard

language for object development.

 Consequently, developers focused on building software systems

more efficiently by enabling the software engineer to work with a

system’s data and processes simultaneously as objects.

 The beauty of objects is that they can be reused over and over in

many different systems and changed without affecting other system

components.

8

9

Software Modeling Methods

1970s: flowcharts, data flow diagrams, Jackson
structured design
1980s: formal methods
1990s: object oriented methods
2000s: OO methods consolidated in UML

Expressiveness

What is UML?

• Unified Modeling Language

• Convergence of three leading OO methods:

– OMT (James Rumbaugh)

– OOSE (Ivar Jacobson)

– Booch (Grady Booch)

• Reference: “The Unified Modeling Language User Guide”, Addison Wesley,

1999.

• Supported by several CASE tools (e.g Together)

10

UML and This Course
• You can model 80% of most problems by using

about 20% UML

• In this course, we teach you those 20%

Benefits of an Object Approach

 Software Engineer break a complex system into small

manageable components

Work on the components individually

 Easily piece the components back together to form a

system

Modularity makes system development easier to grasp

Modules easier to share among members of a project

team

 User communication is enhanced

 Reusable pieces are formed that can be plugged into

other systems efforts or used as starting points for other

projects

 Save time; new projects do not have to start from scratch

and learning curves are not as steep

 “Object think” is a much more realistic way to think about

11

Why UML?
• Now the industry standard method for software engineering (design and

documentation). When applied properly it makes software engineering

possible (‘round-trip engineering’)

• All design/documentation and implementation can really be integrated

12

The Rational Unified Process (RUP)

 Rational Software Corporation has created a methodology

called the Rational Unified Process (RUP) that define how to

apply UML.

 A specific methodology that maps out when and how to use

the various UML techniques for object-oriented analysis and

design

 RUP is a rapid application development approach to building

systems that is similar to the iterative development approach

or extreme programming described in Chapter 2.

 RUP emphasizes iterative, incremental development, and

prototyping.

 A two-dimensional process consisting of phases and

workflows

– Phases are time periods in development

– Workflows are the tasks that occur in each phase

– Activities in both phases & workflows will overlap

13

The Unified Process

14Chapter 5 O-O Design Techniques

using UML

UML diagram types

 Activity diagrams, which show the activities involved in a

process or in data processing .

 Use case diagrams, which show the interactions between a

system and its environment.

 Sequence diagrams, which show interactions between

actors and the system and between system components.

 Class diagrams, which show the object classes in the

system and the associations between these classes.

 State diagrams, which show how the system reacts to

internal and external events.

15

UML first pass: Use case diagram

Use case diagram represent the functionality of the system

from user’s point of view

Actor.

Use Case

System boundary

Classifier

UML: Use Case Diagram

17

http://www.cragsystems.co.uk/uml_tutorial/

UML first pass: Class diagrams

1

2

push()

release()

1

1

blinkIdx

blinkSeconds()

blinkMinutes()

blinkHours()

stopBlinking()

referesh()

LCDDisplay Battery

Load

1

2

1

Time

Now

1

Watch

Operations

state

PushButton

Attribute

Class diagrams represent the structure of the system

Class

Association

Multiplicity

Class diagrams represent the structure of the system

UML: Class Diagram

19

UML Class: Different levels of detail

Objects and Classes

20

Example

Class Diagrams

21

Associations: Multiplicity

1-to-1 and 1-to-many Associations

22

Association, Aggregation and Composition

 The association link indicates that two classes have a relationship:

a student attends a school; a student takes courses.

 Each link has two ends which are called roles. Each role has a

name, a multiplicity, a navigability and a type.

 The role can have one of three types: association, composition or

aggregation.

 Association indicates that the two classes have a relationship.

23

Aggregation

24

An aggregation is a special case of association denoting a “consists of”

hierarchy.

The aggregate is the parent class, the components are the children class.

Composition

A solid diamond denotes composition, a strong form of
aggregation where components cannot exist without the
aggregate.

25

Composition between two

classes

http://en.wikipedia.org/wiki/Image:Aggregation-Composition1.svg
http://en.wikipedia.org/wiki/Image:Aggregation-Composition1.svg

Generalization/Inheritance

26

Inheritance
 Classes inherit the attributes and operations of their ‘parents’ i.e.

from the generalization to the specialization

 Operations and attributes may be re-defined

 Additional operations or attributes must be defined

 Operations and attributes may not be removed in the

specialization

27

Associations: which type?

If in doubt use simple association

Use aggregation or composition for “has a” relationship
s
Use inheritance for “is a” relationships

Visibility and Scope ...

Window

-size: Rectangle

+display(): void

+hide(): void

#attachXWindow()

28

Message

UML first pass: Sequence diagram

:Time:Watch:WatchUser

Object

Activation

Sequence diagrams represent the behavior of a system

as messages (“interactions”) between different objects

Actor

pressButton1()

Lifeline

blinkHours()

pressButton2()
incrementMinutes()

:LCDDisplay

pressButton1and2()

commitNewTime()

stopBlinking()

refresh()

pressButton1()
blinkMinutes()

UML first pass: Statechart diagrams

State

Initial state

Final state

Transition

Event

Represent behavior of a single object with interesting

dynamic behavior.

button1&2Pressed

button1Pressed

button2Pressed

button2Pressed

button2Pressed

button1Pressed

button1&2Pressed
Increment

Minutes

Increment

Hours

Blink

Hours

Blink

Seconds

Blink

Minutes

Increment

Seconds

Stop

Blinking

31

References

• Bernd Bruegge & Allen H. Dutoit Object-Oriented Software

Engineering: Using UML, Patterns, and Java

• Software Engineering, Ivan Marsic, 2020

• Sommerville, I. (2015). Software Engineering 10. Pearson.

• Gustafson, D., 2002. Schaum's Outline of Software Engineering.

McGraw-Hill, Inc.

