Systems Concepts and Modeling
Chapter 2 — Lecture 1

Objectives

J Context models
 Interaction models

J Structural models

J Behavioral models

- Model-driven engineering

System Modeling

 System modeling is the process of developing abstract
models of a system, with each model presenting a different
view or perspective of that system.

 System modeling now usually means representing a system
using some kind of graphical notation based on diagram
types in the Unified Modeling Language (UML).

] Models are used during:

— the requirements engineering process to help derive the
detailed requirements for a system

— the design process to describe the system to engineers
Implementing the system and

— after implementation to document the system’s structure and
operation

A System: General Properties

 Made up of components, both physical and conceptual
 Receives inputs and transforms these into outputs

 Exists within an environment (collection of hardware and
software tools used to build software system).

d Boundary divides things inside the system from things
outside

d Exhibits behavior (working/functionality)
d Fulfils some specific purpose which varies according to

pa”'iﬁ&%ﬁﬁ%“i%ms System: Company Payroll

 Key Inputs: employee information

 Key outputs: payslips, cheques, cash
 Physical components: people, paper computers

L Conceptual components: basic salary

Systems: Definition

] A system is an assembly of components, connected together in
an organized way and separated from its environment by a
boundary. This organized assembly has an observable purpose
which is characterized by how it transforms inputs from the
environment into outputs to the environment.

] A system with no inputs or outputs is closed.

Software components

 Files

J Subroutines
 Library functions
. Classes

] Packages

Component dependency

« Component A depends on B
@ A change to B may require a change to A
« Many types of component dependency

Modeling in Design

 The field of software engineering now incorporates object-
oriented concepts and techniques, by which a system is
viewed as a collection of self-contained objects that include
both data and processes.

1 Objects can be built as individual pieces and then put
together to form a system, leading to modular, reusable
project components.

In 1997, the Unified Modeling Language (UML) was
accepted as the standard language for object development.
d Some types of models support the analysis process
— Class diagrams 7

— Use case diagrams
— Activity Diagrams

What is “object-oriented”?

The object-oriented approach views a software system as a
collection of self-contained objects, including both data and
processes.

Object-oriented systems focus on capturing the structure and
behavior of software systems in modules (objects) that encompass
both data and processes.

Unified Modeling Language (UML) was accepted as the standard
language for object development.

Consequently, developers focused on building software systems
more efficiently by enabling the software engineer to work with a
system’s data and processes simultaneously as objects.

The beauty of objects is that they can be reused over and over in
many different systems and changed without affecting other system
components.

Software Modeling Methods

@ 1970s: flowcharts, data flow diagrams, Jackson
structured design
@ 1980s: formal methods
@ 1990s: object oriented methods
@ 2000s: OO methods consolidated in UML
A

o
Expressiveness Natural

Language
FPseudocode _
< o Object
© Criented
Flowcharts
L

DFDs
Formal
Methods

o

Rigour

Whatis UML?

Unified Modeling Language
Convergence of three leading OO methods:
— OMT (James Rumbaugh)
— OOSE (Ivar Jacobson)
— Booch (Grady Booch)
Reference: “The Unified Modeling Language User Guide”, Addison Wesley,
1999.
Supported by several CASE tools (e.g Together)

UML and This Course

* You can model 80% of most problems by using
about 20% UML

» In this course, we teach you those 20%

Benefits of an Object Approach

] Software Engineer break a complex system into small
manageable components

d Work on the components individually

1 Easily piece the components back together to form a
system

J Modularity makes system development easier to grasp

J Modules easier to share among members of a project
team

J User communication is enhanced

] Reusable pieces are formed that can be plugged into
other systems efforts or used as starting points for other
projects

] Save time; new projects do not have to start from scratch
and learning curves are not as steep 11

Why UML?

* Now the industry standard method for software engineering (design and
documentation). When applied properly it makes software engineering
possible (‘round-trip engineering’)

« All design/documentation and implementation can really be integrated

UML Diagram Type

Structural Diagrams

Behavioral Diagrams

Sl Diu;g:.'uchle Deployment Diagram Activity Diagram Use Case Diagram

r I
i |
Pr.?ckuge _F'rnﬂe _Cluss Sh:ﬂe: Machine | Inferaction Diagram I
Diagram Diagram Diagram Diagram | :
Object Diagram Component Diagram

Sequence Diagram

Diagram

Interaction Overview Timina Diaaram
Diagram g ar

 Rational Software Corporation has created a methodology
called the that define to
apply UML.

A specific methodology that maps out when and how to use
the various UML techniques for object-oriented analysis and
design

1 RUP is a rapid application development approach to building
systems that is similar to the iterative development approach
or extreme programming described in Chapter 2.

1 RUP emphasizes iterative, incremental development, and
prototyping.

A two-dimensional process consisting of phases and
workflows

— Phases are time periods in development
— Workflows are the tasks that occur in each phase 13

The Unified Process

Enginoering Workflows

Phases Inception Elaboration Conmstruction Transition
Business Modeling 5 .]
13 ' ! ! '
' 1 i 4 1 ¥ ¥
Y H \ V
Roquirements i i i " i
} 2 | : "
B | ! e R S S
Analysis ! i .
! 1] ']
+ + o 4 ' . t
Dosign ' ' { | " 1 '
’]] ‘ ' '
8 e RS - 1 i : 2 —— == A S
: | i ' : i
Implementation | ! \ i
b H i ks i
Test H !
)) \ i i '
e b 4 o —
Doployment | | | |
| ' .
! : 1
Supporting Workflows
Phases Inception Flaboration Construction Transition
Contiguration and } ! 1 | 1 |
Change Managemoent 1 | | \ { | i i
4 ’ v 1 ! : : +
Project Management ; 5 | ‘ ‘
}) | | \ |
; " ' " - $ '
Environment L , | l !
' ' i
+ ! | + + - ‘ -+ } t
Itor | Vo ter lter & i ler Itor Itor ‘ It Itor
| | b+ 1) |+ 1 k k+1 m
|

Business Modelling

Planning

Initial Planning

Chapter 5 O-O Design Techniques
using UML

Requirements Analysis & Design

, Implementation
Config & Change
Management

Project Management |

Environment

Evaluation Deployment

14

UML diagram types

1 Activity diagrams, which show the activities involved in a
process or in data processing .

 Use case diagrams, which show the interactions between a
system and its environment.

 Sequence diagrams, which show interactions between
actors and the system and between system components.

 Class diagrams, which show the object classes in the
system and the associations between these classes.

 State diagrams, which show how the system reacts to
iInternal and external events.

15

UML first pass: Use case diagram

Classifier
ﬁse Case

/

Course
ii I Givelecture

Instructor

% SRl
HoldExercise

% / Student
DoHomework

rohne ./ﬁsystem boundary}

oo Assistant L

Use case diagram represent the functionality of the system

from user’s point of view

UML: Use Case Diagram

”-"Hal Reservation System SUb'Dfagram:

Check in
Passenger

Design:

Check in
Passenger
Add
Reservation
Cancel
Reservation

Ticket Clerk

To add detaif
{extension):

Check in
Passenger

<<USES>>

<zprtends>=<ektehds:=>

Assign Assign Aisle
Window Seat Seat

<<USBRE>>

Weigh
Luggage

UML first pass: Class diagrams

Class diagrams represent the structure of the system

Class

[Association

7

Multiplicity

Watch
1 11 |1
2 | N\
1 | | 2 1
PushButton .
state LCDDisplay Battery Tlime
push () blinkIdx Load Now
release () blinkSeconds () |
blinkMinutes ()
blinkHours ()
stopBlinking() :
[Attribute referesh () Operatlons}

Class diagrams represent the structure of the system

UML: Class Diagram

_|—Name . -
BankAccount UML Class: Different levels of detail
halance —T Atributes Bank Account Bank Account
iRateCharge

- Balance: int Balance
dgposit | Wethods/ - IRateCharge:float iIRateCharge
Withraw operations +deposit:int Deposit

+wiith draw:int \ withdraw

\ y
Srgnature
Bank Bank Account
Account
Balance

iIRateCharge

Objects and Classes

anbdbject: ClazsMName

attributed = walued
attributez = valuez

Class MNamne

atbabnate1

ATOIONITS .S . Aara TFpe
atthbuteS:type = mt_ wal

operaticn] ()
operatond azlest]
operatrn™) : rehnitype

Ohject {instance}is instantiated from Class

Example

spaceWagon: Car

manufacturer = Mitsubishi
refistrationlumber =
RG 3TGHUY driver = “Haomi™

Car

_____ = manufaciurer
registrabonMumber:
Integer driver: Sting
= “TUnspecified™

registe

rﬂ_
drive (Integzer speed)
geiDriver() : Sting

Class Diagrams

BankAccount
Customer

Associations: Multiplicity

Student Module

* *

* Many-to-many relationship

Student Module

10.7 0.12

* A student takes between 0 and 12 modules
* A module is taken by at least 10 students

1-to-1 and 1-to-many Associations

Has-capital
Country 1 1 City
name: String name: String
1-to-1 association
Polygon 1 * Point
x:Integer
draw() y:Integer

1-to-many association

Association, Aggregation and Composition

] The association link indicates that two classes have a relationship:

a HEY .

-address 1. 6 | -courseCode

] Each link has two ends which are called roles. Each role has a
name, a multiplicity, a navigability and a type.

[The role can have one of three types: association, composition or
aggregation.

] Association indicates that the two classes have a relationship.

Aggregation

An aggregation is a special case of association denoting a “consists of”
hierarchy.

The aggregate is the parent class, the components are the children class.

T

Engine Stereo Door

N T S

Pistons | | SparkPlugs Radio ||Cassette Handle

Composition

J A solid diamond denotes composition, a strong form of
aggregation where components cannot exist without the
aggregalte.

University

1.:* *
Building }0 i Room 9.

sl Composition between two

classes

Professor

http://en.wikipedia.org/wiki/Image:Aggregation-Composition1.svg
http://en.wikipedia.org/wiki/Image:Aggregation-Composition1.svg

Generalization/Inheritance

Account

Balance
Accountld

Dieposit{) ks 3 kind of
Withdrawi)
GetBalance(}

P

SavingsAccound ChequefAccount

Withdraw() Withadrawi()

Inheritance

U Classes inherit the attributes and operations of their ‘parents’ i.e.
from the generalization to the specialization

(] Operations and attributes may be re-defined

] Additional operations or attributes must be defined

(] Operations and attributes may nof be removed in the
specialization

Associations: which type?

@ If in doubt use simple association

@ Use aggregation or composition for “has a" relationship
@ S
@ Use inheritance for “is a" relationships

Visibility and Scope ...

Window
Publicccvvvvvviviinnan #
Visible to using classes
Protected # .
Visible to subclasses -Size. ReCtangle
Privateccccviiianiinn, -

Visible only within this class

+display(): void
+hide(): void

#attachXWindow()

Object Lifeline |

:Watch :L.CDDisplay : Time

:WatchUser

|
press uttonl()= blinkHours ()

-

pressButtonl ()

:'J blinkMinutes ()

N
»

[+

pressButton2 ()]]
—{ JincrementMinutes

P

) I

| re—

| refresh()'

pressButtonland2 ()
1 | commitNewTime ()

S E;}._

stopBlinking ()

Activation

Sequence diagrams represent the behavior of a system
as messages (‘interactions”) between different objects

UML first pass: Statechart diagrams

nitial state}—

buttonl&2Pressed / B14ink T\ buttonzPressed >(Increment
\ Hours j< _ Hours

.
Transition} buttonlPressed
T

buttonl&ZPressed< B14nk \buttonZPressed Incremem)

M1 nutesj«: Minutes
State N\
buttonlPressed
vV
.\ button2Pressed
Stop B1ink Increment
B1inking Seconds} Seconds

Final statej

Represent behavior of a single object with interesting

dynamic behavior.

References

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software
Engineering: Using UML, Patterns, and Java

Software Engineering, Ivan Marsic, 2020
Sommerville, 1. (2015). Software Engineering 10. Pearson.

Gustafson, D., 2002. Schaum's Outline of Software Engineering.
McGraw-Hill, Inc.

31

