
Systems Concepts and Modeling

Chapter 2 – Lecture 1

1

Objectives

 Context models

 Interaction models

 Structural models

 Behavioral models

Model-driven engineering

2

System Modeling

 System modeling is the process of developing abstract

models of a system, with each model presenting a different

view or perspective of that system.

 System modeling now usually means representing a system

using some kind of graphical notation based on diagram

types in the Unified Modeling Language (UML).

Models are used during:

– the requirements engineering process to help derive the

detailed requirements for a system

– the design process to describe the system to engineers

implementing the system and

– after implementation to document the system’s structure and

operation
3

4

A System: General Properties
Made up of components, both physical and conceptual

 Receives inputs and transforms these into outputs

 Exists within an environment (collection of hardware and
software tools used to build software system).

 Boundary divides things inside the system from things
outside

 Exhibits behavior (working/functionality)

 Fulfils some specific purpose which varies according to
particular viewpointsExample of a System: Company Payroll
Key Inputs: employee information

Key outputs: payslips, cheques, cash

 Physical components: people, paper computers

Conceptual components: basic salary

Systems: Definition

A system is an assembly of components, connected together in
an organized way and separated from its environment by a
boundary. This organized assembly has an observable purpose
which is characterized by how it transforms inputs from the
environment into outputs to the environment.

A system with no inputs or outputs is closed.

5

Software components

 Files

 Subroutines

 Library functions

 Classes

 Packages

6

Component dependency

Component A depends on B
A change to B may require a change to A
Many types of component dependency

A B

Modeling in Design

 The field of software engineering now incorporates object-

oriented concepts and techniques, by which a system is

viewed as a collection of self-contained objects that include

both data and processes.

 Objects can be built as individual pieces and then put

together to form a system, leading to modular, reusable

project components.

 In 1997, the Unified Modeling Language (UML) was

accepted as the standard language for object development.

 Some types of models support the analysis process

– Class diagrams

– Use case diagrams

– Activity Diagrams

7

What is “object-oriented”?

 The object-oriented approach views a software system as a

collection of self-contained objects, including both data and

processes.

 Object-oriented systems focus on capturing the structure and

behavior of software systems in modules (objects) that encompass

both data and processes.

 Unified Modeling Language (UML) was accepted as the standard

language for object development.

 Consequently, developers focused on building software systems

more efficiently by enabling the software engineer to work with a

system’s data and processes simultaneously as objects.

 The beauty of objects is that they can be reused over and over in

many different systems and changed without affecting other system

components.

8

9

Software Modeling Methods

1970s: flowcharts, data flow diagrams, Jackson
structured design
1980s: formal methods
1990s: object oriented methods
2000s: OO methods consolidated in UML

Expressiveness

What is UML?

• Unified Modeling Language

• Convergence of three leading OO methods:

– OMT (James Rumbaugh)

– OOSE (Ivar Jacobson)

– Booch (Grady Booch)

• Reference: “The Unified Modeling Language User Guide”, Addison Wesley,

1999.

• Supported by several CASE tools (e.g Together)

10

UML and This Course
• You can model 80% of most problems by using

about 20% UML

• In this course, we teach you those 20%

Benefits of an Object Approach

 Software Engineer break a complex system into small

manageable components

Work on the components individually

 Easily piece the components back together to form a

system

Modularity makes system development easier to grasp

Modules easier to share among members of a project

team

 User communication is enhanced

 Reusable pieces are formed that can be plugged into

other systems efforts or used as starting points for other

projects

 Save time; new projects do not have to start from scratch

and learning curves are not as steep

 “Object think” is a much more realistic way to think about

11

Why UML?
• Now the industry standard method for software engineering (design and

documentation). When applied properly it makes software engineering

possible (‘round-trip engineering’)

• All design/documentation and implementation can really be integrated

12

The Rational Unified Process (RUP)

 Rational Software Corporation has created a methodology

called the Rational Unified Process (RUP) that define how to

apply UML.

 A specific methodology that maps out when and how to use

the various UML techniques for object-oriented analysis and

design

 RUP is a rapid application development approach to building

systems that is similar to the iterative development approach

or extreme programming described in Chapter 2.

 RUP emphasizes iterative, incremental development, and

prototyping.

 A two-dimensional process consisting of phases and

workflows

– Phases are time periods in development

– Workflows are the tasks that occur in each phase

– Activities in both phases & workflows will overlap

13

The Unified Process

14Chapter 5 O-O Design Techniques

using UML

UML diagram types

 Activity diagrams, which show the activities involved in a

process or in data processing .

 Use case diagrams, which show the interactions between a

system and its environment.

 Sequence diagrams, which show interactions between

actors and the system and between system components.

 Class diagrams, which show the object classes in the

system and the associations between these classes.

 State diagrams, which show how the system reacts to

internal and external events.

15

UML first pass: Use case diagram

Use case diagram represent the functionality of the system

from user’s point of view

Actor.

Use Case

System boundary

Classifier

UML: Use Case Diagram

17

http://www.cragsystems.co.uk/uml_tutorial/

UML first pass: Class diagrams

1

2

push()

release()

1

1

blinkIdx

blinkSeconds()

blinkMinutes()

blinkHours()

stopBlinking()

referesh()

LCDDisplay Battery

Load

1

2

1

Time

Now

1

Watch

Operations

state

PushButton

Attribute

Class diagrams represent the structure of the system

Class

Association

Multiplicity

Class diagrams represent the structure of the system

UML: Class Diagram

19

UML Class: Different levels of detail

Objects and Classes

20

Example

Class Diagrams

21

Associations: Multiplicity

1-to-1 and 1-to-many Associations

22

Association, Aggregation and Composition

 The association link indicates that two classes have a relationship:

a student attends a school; a student takes courses.

 Each link has two ends which are called roles. Each role has a

name, a multiplicity, a navigability and a type.

 The role can have one of three types: association, composition or

aggregation.

 Association indicates that the two classes have a relationship.

23

Aggregation

24

An aggregation is a special case of association denoting a “consists of”

hierarchy.

The aggregate is the parent class, the components are the children class.

Composition

A solid diamond denotes composition, a strong form of
aggregation where components cannot exist without the
aggregate.

25

Composition between two

classes

http://en.wikipedia.org/wiki/Image:Aggregation-Composition1.svg
http://en.wikipedia.org/wiki/Image:Aggregation-Composition1.svg

Generalization/Inheritance

26

Inheritance
 Classes inherit the attributes and operations of their ‘parents’ i.e.

from the generalization to the specialization

 Operations and attributes may be re-defined

 Additional operations or attributes must be defined

 Operations and attributes may not be removed in the

specialization

27

Associations: which type?

If in doubt use simple association

Use aggregation or composition for “has a” relationship
s
Use inheritance for “is a” relationships

Visibility and Scope ...

Window

-size: Rectangle

+display(): void

+hide(): void

#attachXWindow()

28

Message

UML first pass: Sequence diagram

:Time:Watch:WatchUser

Object

Activation

Sequence diagrams represent the behavior of a system

as messages (“interactions”) between different objects

Actor

pressButton1()

Lifeline

blinkHours()

pressButton2()
incrementMinutes()

:LCDDisplay

pressButton1and2()

commitNewTime()

stopBlinking()

refresh()

pressButton1()
blinkMinutes()

UML first pass: Statechart diagrams

State

Initial state

Final state

Transition

Event

Represent behavior of a single object with interesting

dynamic behavior.

button1&2Pressed

button1Pressed

button2Pressed

button2Pressed

button2Pressed

button1Pressed

button1&2Pressed
Increment

Minutes

Increment

Hours

Blink

Hours

Blink

Seconds

Blink

Minutes

Increment

Seconds

Stop

Blinking

31

References

• Bernd Bruegge & Allen H. Dutoit Object-Oriented Software

Engineering: Using UML, Patterns, and Java

• Software Engineering, Ivan Marsic, 2020

• Sommerville, I. (2015). Software Engineering 10. Pearson.

• Gustafson, D., 2002. Schaum's Outline of Software Engineering.

McGraw-Hill, Inc.

