
Chapter 6 – Architectural Design

Chapter 6 Architectural Design 1

Different Types of Software Architecture

Topics covered

 The requirements describe the function of a system as seen by the client.

Given a set of requirements, the software development team must design a

system that will meet those requirements.

 In this chapter, we look at the following aspects of design:

 Software Architecture Definition

 Architectural design decisions

 Architectural Styles

Chapter 6 Architectural Design 2

Software Architecture Definition

 Software Architecture: fundamental structures of a software system and

the discipline of building such structures and systems.

• Software architecture, describing the subsystem decomposition in terms of

subsystem responsibilities, dependencies among subsystems, subsystem

mapping to hardware, and major policy decisions such as control flow,

access control, and data storage

• Software architecture is a set of high-level decisions that determine the

structure of the solution (parts of system-to-be and their relationships)

• Decisions to use well-known solutions that are proven to work for similar

problems

Chapter 6 Architectural Design 3

Example Architectural Decisions

Subsystem

for device

control

Subsystem

for

administration

Subsystem

for remote

data access

On embedded

computer

On office

desktop

On tenant’s

smartphone

(…and Web?)

Safe Home Access System

Decision on mapping

software-to-hardware

Decision on system

decomposition

Such decisions are made early on,

perhaps while discussing the requirements with the customer

to decide which hardware devices will be used for user interaction and device control

Example decisions:

Decision on development

platform or operating system

(Android vs. iOS, etc.)

Decision on how to fit

the subsystems together

(“architectural style”)

Chapter 6 Architectural Design 4

The Design Process

 The system should be described at several different levels of abstraction.

 Design takes place in overlapping stages.

Architectural
design

Abstract
specificatio

n

Interface
design

Component
design

Data
structure
design

Algorithm
design

System
architecture

Software
specification

Interface
specification

Component
specification

Data
structure

specification

Algorithm
specification

Requirements
specification

Design activities

Design products

Chapter 6 Architectural Design 5

Architectural design

 Architectural design is concerned with understanding how a software system

should be organized and designing the overall structure of that system.

 Architectural design is the critical link between design and requirements

engineering, as it identifies the main structural components in a system and

the relationships between them.

 Architecture design plans for how the system will be distributed across

computers and what hardware and software will be used for each computer.

 The output of the architectural design process is an architectural model that

describes how the system is organized as a set of communicating

components.

Chapter 6 Architectural Design 6

Architecture versus Design

Architecture focuses on non-functional requirements (“cross-

cutting concerns”) and decomposition of functional

requirements

Design focuses on implementing the functional requirements

Software Design: Deriving a solution which satisfies software

requirements

Chapter 6 Architectural Design 7

Architectural abstraction

 Architecture in the small is concerned with the architecture of individual

programs. At this level, we are concerned with the way that an individual

program is decomposed into components.

 Architecture in the large is concerned with the architecture of complex

enterprise systems that include other systems, programs, and program

components. These enterprise systems are distributed over different

computers, which may be owned and managed by different companies.

Chapter 6 Architectural Design 8

Architectural Components

 Software systems can be divided into four basic functions:
1. Data storage.

2. Data access logic: the processing required to access stored data.

3. Application logic: the logic documented in the use cases, and

functional requirements.

4. Presentation logic: the display of information to the user and the

acceptance of the user’s commands.

9Chapter 6 Architectural Design

Architectural Components (cont’d)

 The three primary hardware components:
o Client computers: Input-output devices employed by users (e.g.,

PCs, laptops, handheld and mobile devices, smart phones)

o Servers: Larger multi-user computers used to store software and

data.

o Network: Connects the computers.

10Chapter 6 Architectural Design

Architectural design decisions

 Architectural design is a creative process so the process differs depending

on the type of system being developed.

 However, a number of common decisions span all design processes and

these decisions affect the non-functional characteristics of the system.

Chapter 6 Architectural Design 11

Architectural design decisions

Chapter 6 Architectural Design 12

Architectural views

What views or perspectives are useful when designing and documenting a

system’s architecture?

What notations should be used for describing architectural models?

 Views are different kinds of “blueprints” created for the system-to-be

 E.g., blueprints for buildings: construction, plumbing, electric wiring ,

heating, air conditioning, …

(Different stakeholders have different information needs)

 It is impossible to represent all relevant information about a system’s

architecture in a single diagram, as a graphical model each architectural

model only shows one view or perspective of the system.

 It might show how a system is decomposed into modules, how the run-time processes

interact or the different ways in which system components are distributed across a

network. For both design and documentation, you usually need to present multiple views

of the software architecture.

Chapter 6 Architectural Design 13

Architectural views

Chapter 6 Architectural Design 14

4 + 1 view model of software architecture

 A logical view, which shows the key abstractions in the system as objects or

object classes. It should be possible to relate the system requirements to

entities in this logical view.

 A process view, which shows how, at run-time, the system is composed of

interacting processes. This view is useful for making judgments about non-

functional system characteristics such as performance and availability.

 A development view, which shows how the software is decomposed for

development; that is, it shows the breakdown of the software into

components that are implemented by a single developer or development

team.

 A physical view, which shows the system hardware and how software

components are distributed across the processors in the system.

 Related using use cases or scenarios (+1)

Chapter 6 Architectural Design 15

How to Fit Subsystems Together:

Some Well-Known Architectural Styles

UNIX shell script architectural style: Pipe-and-Filter

Client/Server

Central Repository (database)

Layered (or Multi-Tiered)

Model-View-Controller

World Wide Web architectural style: REST (Representational State

Transfer)

Chapter 6 Architectural Design 16

Architectural patterns

 Patterns are a means of representing, sharing and reusing knowledge.

 An architectural pattern is a stylized description of good design practice,

which has been tried and tested in different environments.

 Patterns should include information about when they are and when the are

not useful.

 Patterns may be represented using tabular and graphical descriptions.

 In this section, we introduce Architectural patterns and briefly describe a

selection of Architectural patterns that are commonly used.

Chapter 6 Architectural Design 17

Pipe and filter architecture

 Functional transformations process their inputs to produce outputs. Thus, output from
one subsystem is the input to the next.

 May be referred to as a pipe and filter model (as in UNIX shell).

 Variants of this approach are very common. When transformations are sequential, this
is a batch sequential model which is extensively used in data processing systems.

 Not really suitable for interactive systems.

 Components: Filters transform input into output

 Connectors: Pipe data streams

 Example: UNIX shell commands

Chapter 6 Architectural Design 18

filter filter filter
pipe pipe

% ls folder-name | grep –v match-string | more

The pipe and filter pattern

Name Pipe and filter

Description The processing of the data in a system is organized so that each processing

component (filter) is discrete and carries out one type of data transformation. The

data flows (as in a pipe) from one component to another for processing.

Example The Figure below is an example of a pipe and filter system used for processing

invoices (payment/ billing system).

When used Commonly used in data processing applications (both batch- and transaction-

based) where inputs are processed in separate stages to generate related outputs.

Advantages Easy to understand and supports transformation reuse. Workflow style matches

the structure of many business processes. Can be implemented as either a

sequential or concurrent system.

Disadvantages The format for data transfer has to be agreed upon between communicating

transformations. Each transformation must parse its input and unparse its output to

the agreed form. This increases system overhead and may mean that it is

impossible to reuse functional transformations that use incompatible data

structures.

Chapter 6 Architectural Design 19

Client-server architecture

 Distributed system model which shows how data and processing is distributed across a range of
components.

 Can be implemented on a single computer.

 Set of stand-alone servers which provide specific services such as printing, data management, etc.

 Set of clients which call on these services.

 Network which allows clients to access servers.

 Client-server architectures balance the processing between client devices and one or more server
devices.

 Generally, clients are responsible for the presentation logic, and the server(s) are responsible for
the data access logic and data storage.

 Application logic location varies depending on the C-S configuration chosen.

Chapter 6 Architectural Design 20

Architectural Style: Client/Server

 A client is a triggering process; a server is a reactive process. Clients make requests

that trigger reactions from servers.

 A server component, offering a set of services, listens for requests for those services.

It waits for requests and then reacts to them.

 A client component, desiring that a service be performed, sends a request to the

server via a connector.

 The server either rejects or performs the request and sends a response back to the

client.

Client Server

Packing a request

for network transport

Unpacking the request

for server call

Packing the response

for network transport

Unpacking the response

for client use

Network connectionpackets packets

1: 4: 2: 3:

21

The Client–server pattern

Name Client-server

Description In a client–server architecture, the functionality of the system is organized into services, with each

service delivered from a separate server. Clients are users of these services and access servers to

make use of them.

Example The Figure below is an example of a film and video/DVD library organized as a client–server system.

When used Used when data in a shared database has to be accessed from a range of locations. Because

servers can be replicated, may also be used when the load on a system is variable.

Advantages The principal advantage of this model is that servers can be distributed across a network (scalable).

General functionality (e.g., a printing service) can be available to all clients and does not need to be

implemented by all services.

Disadvantages Each service is a single point of failure so susceptible to denial of service attacks or server failure.

Performance may be unpredictable because it depends on the network as well as the system. May

be management problems if servers are owned by different organizations.

Chapter 6 Architectural Design 22

Two-Tiered Client-Server Architecture

o Thick client – most of application logic on the client side (shown here)

o Thin client – little application logic on the client side; most shifted to server

side

23Chapter 6 Architectural Design

Three-Tiered Client-Server Architecture

o Adds “specialized” servers – one for application logic; one for data base

tasks

24Chapter 6 Architectural Design

Repository architecture

 Sub-systems must exchange data. This may be done in two ways:

 Shared data is held in a central database or repository and may be accessed by all sub-
systems;

 Each sub-system maintains its own database and passes data explicitly to other sub-
systems.

When large amounts of data are to be shared, the repository model of
sharing is most commonly used as this is an efficient data sharing
mechanism.

Chapter 6 Architectural Design 25

The Repository pattern

Name Repository

Description All data in a system is managed in a central repository that is accessible to all system components.

Components do not interact directly, only through the repository.

Example The Figure below is an example of an IDE where the components use a repository of system design

information. Each software tool generates information which is then available for use by other tools.

When used You should use this pattern when you have a system in which large volumes of information are generated that

has to be stored for a long time. You may also use it in data-driven systems where the inclusion of data in the

repository triggers an action or tool.

Advantages Components can be independent—they do not need to know of the existence of other components. Changes

made by one component can be propagated to all components. All data can be managed consistently (e.g.,

backups done at the same time) as it is all in one place.

Disadvantages The repository is a single point of failure so problems in the repository affect the whole system. May be

inefficiencies in organizing all communication through the repository. Distributing the repository across several

computers may be difficult.

Chapter 6 Architectural Design 26

Layered architecture

 Used to model the interfacing of sub-systems.

Organises the system into a set of layers (or abstract machines) each of

which provide a set of services.

 Supports the incremental development of sub-systems in different layers.

When a layer interface changes, only the adjacent layer is affected.

Chapter 6 Architectural Design 27

The Layered architecture pattern

Name Layered architecture

Description Organizes the system into layers with related functionality associated with each layer. A layer provides services

to the layer above it so the lowest-level layers represent core services that are likely to be used throughout the

system.

When used Used when building new facilities on top of existing systems; when the development is spread across several

teams with each team responsibility for a layer of functionality; when there is a requirement for multi-level

security.

Advantages Allows replacement of entire layers so long as the interface is maintained. Redundant facilities (e.g.,

authentication) can be provided in each layer to increase the dependability of the system.

Disadvantages In practice, providing a clean separation between layers is often difficult and a high-level layer may have to

interact directly with lower-level layers rather than through the layer immediately below it. Performance can be a

problem because of multiple levels of interpretation of a service request as it is processed at each layer.

Chapter 6 Architectural Design 28

Architectural Style: Layered

 A layered system is organized hierarchically, each layer providing services to

the layer above it and using services of the layer below it

a.k.a. Tiered Software Architecture

User Interface Layer User Interaction

Algorithms &

Data Processing

Storage, Networking,

& Device Drivers

Application Logic Layer

(Business Policies)

Technical Services Layer

(Mechanisms & Utilities)

Chapter 6 Architectural Design

29

The Model-View-Controller (MVC) pattern

Name MVC (Model-View-Controller)

Description Separates presentation and interaction from the system data. The system is structured into three logical

components that interact with each other. The Model component manages the system data and associated

operations on that data. The View component defines and manages how the data is presented to the user. The

Controller component manages user interaction (e.g., key presses, mouse clicks, etc.) and passes these

interactions to the View and the Model.

When used Used when there are multiple ways to view and interact with data. Also used when the future requirements for

interaction and presentation of data are unknown.

Advantages Allows the data to change independently of its representation and vice versa. Supports presentation of the same

data in different ways with changes made in one representation shown in all of them.

Disadvantages Can involve additional code and code complexity when the data model and interactions are simple.

Chapter 6 Architectural Design 30

Architectural Style: Model-View-Controller

Model: holds all the data, state and application logic. Unaware of the View
and Controller.

View: gives user a presentation of the Model. Gets data directly from the
Model

Controller: Takes user input and figures out what it means to the Model

Chapter 6 Architectural Design 31

https://www.guru99.com/mvc-tutorial.html

REST: Representational state transfer

 REST (REpresentational State Transfer) is an architectural style for developing web services

 In the REST architectural style, the implementation of the client and the implementation of the server

can be done independently without each knowing about the other. This means that the code on the

client side can be changed at any time without affecting the operation of the server, and the code on

the server side can be changed without affecting the operation of the client.

 REST is intended to evoke an image of how a well-designed Web application behaves:

• a network of web pages (a virtual state-machine),

• where the user progresses through an application by selecting links (state transitions),

• resulting in the next page (representing the next state of the application) being transferred to the user and

rendered for their use.

user

… text text text

link text text …

… text text text

text link text …

… text link text

text text text …

Web resource

Web resource

Web resource

Application

state

Application

state

Application

state
State transition

(HTTP operation)

State transition

(HTTP operation)

Chapter 6 Architectural Design 32

