
SWE401: Software Engineering
Chapter 1: Introduction

Chapter 1 Introduction 1

Objectives

understand what software engineering is and why it
is important;

Professional software development
• What is meant by software engineering.

• Understand that the development of different types of
software system may require different software
engineering techniques;

Understand ethical and professional issues that are
important for software engineers;

Software engineering ethics
• A brief introduction to ethical issues that affect software

engineering.

Chapter 1 Introduction 2

Software engineering

The economies of ALL developed nations are
dependent on software.

More and more systems are software controlled

Software engineering is concerned with theories,
methods and tools for professional software
development.

Expenditure on software represents a
significant fraction of GNP in all developed countries.

Chapter 1 Introduction 3

Software costs

Software costs often dominate computer system
costs. The costs of software on a PC are often greater
than the hardware cost.

Software costs more to maintain than it does to
develop. For systems with a long life, maintenance
costs may be several times development costs.

Software engineering is concerned with cost-effective
software development.

Chapter 1 Introduction 4

5

Google Chrome: How many lines of code is

Google Chrome?

4,490,488 lines of code, 5,448,668 lines

with comments included, spread over

21,367 unique files.

5

6

Size of Windows: Millions of LOC

6

7

Programming in the Small
 There are many different types of software system, ranging from simple

embedded systems to complex, worldwide information systems.

 There are no universal notations, methods, or techniques for software
engineering because different types of software require different
approaches.

 Developing an organizational information system is completely different
from developing a controller for a scientific instrument.

 For small programs:
Requirements simple, precise, do not change
Only used by one person
Only used a few times

 Developing an organizational complex information system is completely
different from developing a simple program.

 All of these applications need software engineering; they do not all need
the same software engineering methods and techniques.

 Let’s analyze the difference between engineering methods with example
of civil engineering for buildings.

7

8

Building a Small Building Building a Skyscrapper

9

Some Key Differences
Shed
• No real planning
• No foundation dig
• Start Construction straight away
• No internal structure
• Simple, fixed instructions to

follow
• No design decision to make
• Make adjustments on the fly
• Done by one person with basic

skills
• Few tools needed
• Few number of users with

simple requirements

Skyscraper
• Major planning and project

management
• Major work on foundations
• No construction until excavation

laid
• Major internal structure
• Complex, ill-defined requirements

that may change
• Major design tasks
• All adjustments must be planned
• Multiple people teams with

multiple skills
• Many tools needed
• Multiple users with complex

requirements
9

10

A Software Failure?

10

There are still many reports of software projects going wrong and of “software failures.”
Software engineering is criticized as inadequate for modern software development.

https://www.youtube.com/watch?v=AGI371ht1N8
http://www.airliners.net/open.file?id=1032914&size=L&width=1024&height=790&sok=&photo_nr=
http://www.airliners.net/open.file?id=1032914&size=L&width=1024&height=790&sok=&photo_nr=

11

A Software Failure?

11

12

A Software Failure?

12

Software project failure
Many of these so-called software failures are a consequence

of two factors:

 Increasing system complexity
• As new software engineering techniques help us to build

larger, more complex systems, the demands change.
Systems have to be built and delivered more quickly; larger,
even more complex systems are required; systems have to
have new capabilities that were previously thought to be
impossible.

 Failure to use software engineering methods
• It is fairly easy to write computer programs without using

software engineering methods and techniques. Many
companies have drifted into software development as their
products and services have evolved. They do not use
software engineering methods in their everyday work.
Consequently, their software is often more expensive and
less reliable than it should be.

Chapter 1 Introduction 13

14

Why Large Projects Fail

• Lack of end-user involvement

• Poor communication (internal and external)

• Poor configuration management

• Inadequate testing

• Poor management

• Technical complexity issues

14

15

Consequences

• Poor Quality

• Late delivery

• Excessive costs

15

16

What is Engineering?

The use of scientific (including mathematical)
principles to construct artifacts

"Application of knowledge of the mathematical and
natural sciences, gained by study, experience and
practice, to the efficient use of the materials and
forces of nature". (MS Encarta)

"Creation and design of practical solutions to real
physical problems"

16

17

What is Software Engineering?

"The systematic approach to the development,
operation, maintenance and retirement of software"
IEEE Standard Glossary of Software Engineering
Terminology, 1983

The construction of quality software with a limited
budget and a given deadline in the context of
constant change

17

Professional software development

Chapter 1 Introduction 18

Frequently asked questions
about software engineering
Question Answer

What is software? Computer programs and associated documentation.

Software products may be developed for a particular

customer or may be developed for a general market.

What are the attributes of good

software?

Good software should deliver the required

functionality and performance to the user and should

be maintainable, dependable and usable.

What is software engineering? Software engineering is an engineering discipline that

is concerned with all aspects of software production.

What are the fundamental software

engineering activities?

Software specification, software development,

software validation and software evolution.

What is the difference between software

engineering and computer science?

Computer science focuses on theory and

fundamentals; software engineering is concerned with

the practicalities of developing and delivering useful

software.

What is the difference between software

engineering and system engineering?

System engineering is concerned with all aspects of

computer-based systems development including

hardware, software and process engineering.

Software engineering is part of this more general

process.Chapter 1 Introduction 19

Frequently asked questions about
software engineering

Question Answer

What are the key challenges facing

software engineering?

Coping with increasing diversity, demands for reduced

delivery times and developing trustworthy software.

What are the costs of software

engineering?

Roughly 60% of software costs are development costs,

40% are testing costs. For custom software, evolution

costs often exceed development costs.

What are the best software engineering

techniques and methods?

While all software projects have to be professionally

managed and developed, different techniques are

appropriate for different types of system. For example,

games should always be developed using a series of

prototypes whereas safety critical control systems

require a complete and analyzable specification to be

developed. You can’t, therefore, say that one method is

better than another.

What differences has the web made to

software engineering?

The web has led to the availability of software services

and the possibility of developing highly distributed

service-based systems. Web-based systems

development has led to important advances in

programming languages and software reuse.

Chapter 1 Introduction 20

Software products

Generic products
• Stand-alone systems that are marketed and sold to any

customer who wishes to buy them.

• Examples – PC software such as graphics programs,
project management tools; CAD software; software for
specific markets such as appointments systems for
dentists.

Customized products
• Software that is commissioned by a specific customer to

meet their own needs.

• Examples – embedded control systems, air traffic control
software, traffic monitoring systems.

Chapter 1 Introduction 21

Product specification

Generic products
• The specification of what the software should do is owned

by the software developer and decisions on software
change are made by the developer.

Customized products
• The specification of what the software should do is owned

by the customer for the software and they make decisions
on software changes that are required.

Chapter 1 Introduction 22

Essential attributes of good
software

Product characteristic Description

Maintainability Software should be written in such a way so that it can evolve

to meet the changing needs of customers. This is a critical

attribute because software change is an inevitable requirement

of a changing business environment.

Dependability and

security

Software dependability includes a range of characteristics

including reliability, security and safety. Dependable software

should not cause physical or economic damage in the event of

system failure. Malicious users should not be able to access or

damage the system.

Efficiency Software should not make wasteful use of system resources

such as memory and processor cycles. Efficiency therefore

includes responsiveness, processing time, memory utilisation,

etc.

Acceptability Software must be acceptable to the type of users for which it is

designed. This means that it must be understandable, usable

and compatible with other systems that they use.

Chapter 1 Introduction 23

24

What is Software Engineering?

24

Software engineering

Software engineering is an engineering discipline that
is concerned with all aspects of software production
from the early stages of system specification through
to maintaining the system after it has gone into use.

Engineering discipline
• Using appropriate theories and methods to solve

problems bearing in mind organizational and financial
constraints.

All aspects of software production
• Not just technical process of development. Also project

management and the development of tools, methods etc.
to support software production.

Chapter 1 Introduction 25

Importance of software
engineering

More and more, individuals and society rely on
advanced software systems. We need to be able to
produce reliable and trustworthy systems
economically and quickly.

It is usually cheaper, in the long run, to use software
engineering methods and techniques for software
systems rather than just write the programs as if it
was a personal programming project. For most types
of system, the majority of costs are the costs of
changing the software after it has gone into use.

Chapter 1 Introduction 26

Software process activities

Software specification, where customers and
engineers define the software that is to be produced
and the constraints on its operation.

Software development, where the software is
designed and programmed.

Software validation, where the software is checked to
ensure that it is what the customer requires.

Software evolution, where the software is modified to
reflect changing customer and market requirements.

Chapter 1 Introduction 27

General issues that affect software

Security and trust
• As software is intertwined with all aspects of our lives, it is

essential that we can trust that software.

Scale
• Software has to be developed across a very wide range

of scales, from very small embedded systems in portable
or wearable devices through to Internet-scale, cloud-
based systems that serve a global community.

Chapter 1 Introduction 28

Software engineering diversity

There are many different types of software system
and there is no universal set of software techniques
that is applicable to all of these.

The software engineering methods and tools used
depend on the type of application being developed,
the requirements of the customer and the
background of the development team.

Chapter 1 Introduction 29

Introduction: Software is Complex

Complex  complicated

Complex = composed of many simple parts

related to one another

Complicated = not well understood, or explained

30

Complexity Example:
Scheduling Fence Construction Tasks

Setting posts

[3 time units]

Cutting wood

[2 time units]

Painting

[5 time units for uncut wood;

4 time units otherwise]

Nailing

[2 time units for unpainted;

3 time units otherwise]

Setting posts  Nailing, Painting

Cutting  Nailing

…shortest possible completion time = ?

31[ “simple” problem, but hard to solve without a pen and paper]

More Complexity

Suppose today is Sunday, November 29

What day will be on January 3?

[To answer, we need to bring the day names and the day

numbers into coordination, and for that we may need again a pen

and paper]
32

The Role of Software Engg. (1)

Customer

Programmer

A bridge from customer needs to programming implementation

First law of software engineering
Software engineer is willing to learn the problem domain
(problem cannot be solved without understanding it first) 33

The Role of Software Engg. (2)

34

Customer:

Requires a computer system to achieve some business goals

by user interaction or interaction with the environment

in a specified manner

System-to-be

Software-to-be

System-to-be

Software-to-be
User

Software Engineer’s task:

To understand how the system-to-be needs to interact with

the user or the environment so that customer’s requirement is met

and design the software-to-be

Programmer’s task:

To implement the software-to-be

designed by the software engineer

Environment

May be the

same person

Example: ATM Machine

Bank’s

remote

datacenter

Bank

customer

ATM machine

1
2

34
5

67
8

90

1
2

34
5

67
8

90

1
2

34
5

67
8

90
Communication link

Understanding the money-machine problem:

35

Importance of software
engineering

 More and more, individuals and society rely on
advanced software systems. We need to be able to
produce reliable and trustworthy systems
economically and quickly.

 It is usually cheaper, in the long run, to use
software engineering methods and techniques for
software systems rather than just write the
programs as if it was a personal programming
project. For most types of system, the majority of
costs are the costs of changing the software after it
has gone into use.

36

Problem-solving Strategy

Divide-and-conquer:

Identify logical parts of the system that each solves
a part of the problem

Easiest done with the help of a domain expert who
already knows the steps in the process (“how it is
currently done”)

Result:
A Model of the Problem Domain
(or “domain model”)

37

How ATM Machine Might Work

Window clerk

Bookkeeper

Safe keeper

Datacenter

liaison

Dispenser

Safe

Cash

Transaction

record

Phone

Speakerphone

Bank’s

remote

datacenter

Domain Model

How may I
help you?

Customer 38

Figure 1-1: Imagined static structure of ATM shows the internal components and their roles.

Cartoon Strip: How ATM Machine Works

B

Verify

this

account

B

Verify

this

account

C Verify

account

XYZ

XYZ valid.

Balance:

$100

C Verify

account

XYZ

XYZ valid.

Balance:

$100

D

Account

valid.

Balance:

$100

D

Account

valid.

Balance:

$100

G Record

$60 less

G Record

$60 less

A Enter

your PIN

Typing in

PIN number

…

A Enter

your PIN

Typing in

PIN number

…

E How may

I help

you?

Withdraw

$60

E How may

I help

you?

Withdraw

$60

F Release

$60

Dispense

$60

F Release

$60

Dispense

$60

H

Please take

your cash

Dispensing!
H

Please take

your cash

Dispensing!

39

Figure 1-2: Dynamic interactions of the imagined components during task accomplishment.

Software Engineering Blueprints

 Specifying software problems and solutions is like
cartoon strip writing

Unfortunately, most of us are not artists, so we will use
something less exciting:
UML symbols

However, in real-life the level of knowledge and
experience to develop a software is high.

40

Second Law of Software Engineering

Software should be written for people first

• Software developer must keep in mind that software is

written for people, not for computers.

• Computers just run software—a minor point. It is people

who understand, maintain, improve, and use software to

solve real-world problems.

• The particular technologies evolve or become obsolete, but

the underlying principles and concepts will likely resurface

in new technologies.

41

UML – Language of Symbols

«interface»

BaseInterface

+ operation()

Actor

ClassName

attribute_1 : int

attribute_2 : boolean

attribute_3 : String

+ operation_1() : void

+ operation_2() : String

+ operation_3(arg1 : int)

Software Class

Three common

compartments:

1. Classifier name

2. Attributes

3. Operations

Comment

Class1Implement

+ operation()

Class2Implement

+ operation()

Software Interface Implementation

Interaction Diagram

doSomething()

instance1 : Class1 instance5 : Class2 instance8 : Class3

doSomethingElse()

doSomethingYetElse()

Inheritance

relationship:

BaseInterface

is implemented

by two classes

Stereotype

«» provides

additional info/

annotation/

explanation

42

UML = Unified Modeling Language

Online information:

http://www.uml.org

Software engineering ethics

Chapter 1 Introduction 43

Software engineering ethics

Software engineering involves wider responsibilities
than simply the application of technical skills.

Software engineers must behave in an honest and
ethically responsible way if they are to be respected
as professionals.

Ethical behaviour is more than simply upholding the
law but involves following a set of principles that are
morally correct.

Chapter 1 Introduction 44

Issues of professional
responsibility

Confidentiality
• Engineers should normally respect the confidentiality of

their employers or clients irrespective of whether or not a
formal confidentiality agreement has been signed.

Competence
• Engineers should not misrepresent their level of

competence. They should not knowingly accept work
which is outwith their competence.

Chapter 1 Introduction 45

Issues of professional
responsibility

Intellectual property rights
• Engineers should be aware of local laws governing the use of

intellectual property such as patents, copyright, etc. They should be
careful to ensure that the intellectual property of employers and
clients is protected.

Computer misuse
• Software engineers should not use their technical skills to misuse

other people’s computers. Computer misuse ranges from relatively
trivial (game playing on an employer’s machine, say) to extremely
serious (dissemination of viruses).

Chapter 1 Introduction 46

ACM/IEEE Code of Ethics

The professional societies in the US have cooperated
to produce a code of ethical practice.

Members of these organisations sign up to the code
of practice when they join.

The Code contains eight Principles related to the
behaviour of and decisions made by professional
software engineers, including practitioners,
educators, managers, supervisors and policy makers,
as well as trainees and students of the profession.

Chapter 1 Introduction 47

Rationale for the code of ethics

• Computers have a central and growing role in commerce,
industry, government, medicine, education, entertainment
and society at large. Software engineers are those who
contribute by direct participation or by teaching, to the
analysis, specification, design, development, certification,
maintenance and testing of software systems.

• Because of their roles in developing software systems,
software engineers have significant opportunities to do
good or cause harm, to enable others to do good or
cause harm, or to influence others to do good or cause
harm. To ensure, as much as possible, that their efforts
will be used for good, software engineers must commit
themselves to making software engineering a beneficial
and respected profession.

Chapter 1 Introduction 48

The ACM/IEEE Code of
Ethics
Software Engineering Code of Ethics and Professional Practice

ACM/IEEE-CS Joint Task Force on Software Engineering Ethics and Professional Practices

PREAMBLE

The short version of the code summarizes aspirations at a high level of the abstraction; the

clauses that are included in the full version give examples and details of how these

aspirations change the way we act as software engineering professionals. Without the

aspirations, the details can become legalistic and tedious; without the details, the

aspirations can become high sounding but empty; together, the aspirations and the details

form a cohesive code.

Software engineers shall commit themselves to making the analysis, specification, design,

development, testing and maintenance of software a beneficial and respected profession.

In accordance with their commitment to the health, safety and welfare of the public,

software engineers shall adhere to the following Eight Principles:

Chapter 1 Introduction 49

Ethical principles

1. PUBLIC - Software engineers shall act consistently with the public interest.

2. CLIENT AND EMPLOYER - Software engineers shall act in a manner that is in the best

interests of their client and employer consistent with the public interest.

3. PRODUCT - Software engineers shall ensure that their products and related

modifications meet the highest professional standards possible.

4. JUDGMENT - Software engineers shall maintain integrity and independence in their

professional judgment.

5. MANAGEMENT - Software engineering managers and leaders shall subscribe to and

promote an ethical approach to the management of software development and

maintenance.

6. PROFESSION - Software engineers shall advance the integrity and reputation of the

profession consistent with the public interest.

7. COLLEAGUES - Software engineers shall be fair to and supportive of their colleagues.

8. SELF - Software engineers shall participate in lifelong learning regarding the practice of

their profession and shall promote an ethical approach to the practice of the profession.

Chapter 1 Introduction 50

