
Operating System Structure
CHAPTER 2

Outline

Operating system services
User and operating system-interface
System calls
System programs
Operating system structures

OS Services

OS Services
Operating systems provide an environment for execution of programs and services to programs and users
 Services provided by the OS can be:
 User interface - Command-Line (CLI), Batch, Graphics User Interface (GUI)
 Program execution - Load a program into memory and run that program
 I/O operations - Interaction with I/O devices
 File-system manipulation - Aids programs to read and write files and directories
 Communications – Helps processes exchange information with each other
 Error detection – Detects and corrects errors for reliable computing
Some other Services provided by the OS for efficient operations can be :
 Resource allocation – Allocates resources to multiple jobs, e.g., CPU cycles, I/O devices
 Accounting – Tracks usage of resources for billing users for resource usage purposes
 Protection and security – Protect and secure multiuser environment
 Protection involves ensuring that all access to system resources is controlled
 Security of the system from outsiders requires user authentication and extends to defending external I/O devices

from invalid access attempts

OS Interfaces
CLI (Command Line Interface)

 CLI or command interpreter allows direct command entry

 Sometimes implemented in kernel, sometimes by systems program

 Can have multiple flavors implemented – shells, e.g., C Shell, Bourne Shell. A shell is a

user interface for access to an operating system's services.

Works in two ways

 Fetches a command from user and executes it

 loads a program in the memory and executes it
rm file.txt

OS Interfaces
GUI (Graphical User Interface)

 User-friendly desktop interface
 Usually mouse, keyboard, and monitor
 Icons represent files, programs, actions, etc.
 Invented at Xerox PARC

Many systems now include both CLI and GUI interfaces
Microsoft Windows is GUI with CLI “command” shell
 Apple Mac OS X is “Aqua” GUI interface with UNIX kernel underneath
 Unix and Linux have CLI with optional GUI interfaces (CDE, KDE, GNOME)

Ubuntu

Windows

Mac OS X

GENOME

OS Interfaces (GUI)
Touch Interfaces

…

System Calls
 Programming interface to the services provided by the OS

 Typically written in a high-level language (C or C++)

Mostly accessed by programs via a high-level Application Programming Interface (API)
rather than direct system call use

Three most common APIs are
Win32 API for Windows
 POSIX API for POSIX-based systems
 Java API for the Java virtual machine (JVM)

System Call for Copying a File Content

System Call for Creating a Process

Create a Process

CreateProcess()

NTCreateProcess()

Calls an API function called CreateProcess()

Make a System call

Standard API Example
 Below is an example of a standard API for a read() function in UNIX and Linux

 On a successful read, the number of bytes read is returned

 A return value of 0 indicates end of file

 If an error occurs, read() returns −1

On Unix-like systems, unistd.h is made up of system call wrapper functions [API] such as read and write.

File Descriptor or fd is an integer number that uniquely represents an opened file in operating system.

System Call Implementation
 The system call interface invokes the intended system call in OS kernel and returns status of
the system call and any return values
 The caller needs know nothing about how the system call is implemented
 Just needs to obey API and understand what OS will do as a result call
Most details of OS interface are hidden from the programmer by API

Types of System Calls
 There are different types of System Calls
 Process Control
 File Manipulation
 Device Manipulation
 Information Maintenance
 Communications
 Protection

Windows and Unix APIs for System Calls

Types of System Calls
Process Control
 create and terminate process
 end, abort
 load, execute
 get and set process attributes
wait for time
 wait event, signal event
 allocate and free memory
 dump memory if error

File Management
 create file/directory
 delete
 read
 write
 close
move
 copy

Types of System Calls
Device Management
 request a resource (device)
 These devices can be physical like disk, memory or

virtual like file
 If the device is not available, the process has to

wait

 release a resource (device)
 Once the process is done working with the device,

it should release it so others can use it

 read
 write

Information Maintenance
 getting the number of users
 time
 date
 operating system version
 amount of free disk space
 getting memory dumps

Types of System Calls
Communication
 getting host id
 getting process id
 open connection
 close connection
 accept connection
 read message
 write message

Protection
 set permission
 get permission
 allow user
 deny user

System Programs
 System programs provide a convenient environment for program development and execution.

Most users’ view of the operation system is defined by system programs, not the actual system calls

File manipulation
 Create, delete, copy, rename, print, list, and manipulate files and directories

Status information
 Some ask the system for info - date, time, amount of available memory, disk space, number of users
 Others provide detailed performance, logging, and debugging information
 Typically, these programs format and print the output to the terminal or other output devices

File modification
 Text editors to create and modify files
 Special commands to search the contents of files or perform transformations of the text

Programming-language support
 Compilers, assemblers, debuggers and interpreters are sometimes provided

Program loading and execution-
 loaders, relocatable loaders, debugging systems, etc

System Programs
Communications
 Provide the mechanism for creating virtual connections among processes, users, and computer systems
 Allow users to send messages to one another’s screens, browse web pages, send electronic-mail messages,

log in remotely, transfer files from one machine to another
Background Services
 Launch at boot time
 Provide facilities like disk checking, process scheduling, error logging, printing
 Run in user context not kernel context
 Known as services, subsystems, daemons

Application programs
 Don’t pertain to system
 Run by users
 Not typically considered part of OS
 Launched by command line, mouse click, finger poke

Operating System Structure
 General-purpose OS is very large program

 Various ways to structure ones

 Simple structure

 Layered

Microkernel

Modules

 Hybrid

Operating System Structure: Simple Structure
MS-DOS – written to provide the most functionality in the
least space
 Not divided into modules
 interfaces and levels of functionality are not well
separated
Apple PRODOS, and Apple Macintosh, are single-
tasking.
OS/2 and different versions of Unix and Microsoft
Windows are multitasking.
resident program: It is a program that is always present
in the computer's memory, thus being "resident".

Operating System Structure: Layered structure

Windows NT

 The operating system is divided into a number of layers
(levels), each built on top of lower layers. The bottom layer
(layer 0), is the hardware; the highest (layer N) is the user
interface.

With modularity, layers are selected such that each uses
functions (operations) and services of only lower-level layers

Operating System Structure: Microkernel structure
Minix 3 OS - Unix-like operating system.
Moves as much from the kernel into user space
 Communication takes place between user modules using message passing
Benefits:
 Easier to extend a microkernel
 Easier to port the operating system to new architectures
More reliable
More secure
Detriments:
 Performance overhead of user space to kernel space communication

Operating System Structure: Microkernel structure

Application
Program

File
System

Device
Driver

Interprocess
Communication

memory
managment

CPU
scheduling

messagesmessages

microkernel

hardware

user
mode

kernel
mode

Operating System Structure: Modules
Many modern operating systems implement loadable kernel
modules
 Uses object-oriented approach
 Each core component is separate
 Each talks to the others over known interfaces
 Each is loadable as needed within the kernel
Linux, Solaris, etc.

Solaris Modular Approach

Operating System Structure: Hybrid
Most modern operating systems are actually not one pure model
Hybrid combines multiple approaches to address performance, security, usability
Linux and Solaris kernels are monolithic, plus modular for dynamic loading of functionality
Windows is mostly monolithic, plus microkernels for different subsystem personalities
Apple Mac OS X hybrid, layered, Aqua UI plus Cocoa programming environment

graphical user interface
Aqua

application environments and services

kernel environment

Java Cocoa Quicktime BSD

Mach

I/O kit kernel extensions

BSD

Mac OS X structure

Mach: For parallel programming

