Operating System Structure

CHAPTER 2

Outline

» Operating system services

»User and operating system-interface
»System calls

»System programs

» Operating system structures

OS Services

user and other system programs

Gul batch command line

user interfaces

system calls
prediai e e communication IESRMICR accountin
execution operations systems allocation g
error pro:?](é[lon
detection _ security
services

operating system

hardware

OS Services

Operating systems provide an environment for execution of programs and services to programs and users
» Services provided by the OS can be:

> User interface - Command-Line (CLI), Batch, Graphics User Interface (GUI)

» Program execution - Load a program into memory and run that program

> 1/0 operations - Interaction with 1/O devices

> File-system manipulation - Aids programs to read and write files and directories

» Communications — Helps processes exchange information with each other

» Error detection — Detects and corrects errors for reliable computing
»Some other Services provided by the OS for efficient operations can be :

> Resource allocation — Allocates resources to multiple jobs, e.g., CPU cycles, /O devices

» Accounting — Tracks usage of resources for billing users for resource usage purposes

» Protection and security — Protect and secure multiuser environment

» Protection involves ensuring that all access to system resources is controlled

» Security of the system from outsiders requires user authentication and extends to defending external I/O devices
from invalid access attempts

BM Command Prompt

OS Interfaces

CLI (Command Line Interface)

» CLI or command interpreter allows direct command entry
» Sometimes implemented in kernel, sometimes by systems program

» Can have multiple flavors implemented — shells, e.g., C Shell, Bourne Shell. A shell is a

user interface for access to an operating system's services.

» Works in two ways
» Fetches a command from user and executes it

rm file.txt
» loads a program in the memory and executes it

& Martin English

Places

B File Explorer

OS Interfaces

GUI (Graphical User Interface) windows E TS

» User-friendly desktop interface
» Usually mouse, keyboard, and monitor
» lcons represent files, programs, actions, etc.
» Invented at Xerox PARC

L
&
& Windows PowerShell
=

Remote Desktop Connection

®

-
-
]

[
B
=
T
2.
2
&)
-3
=

Recently added

FL Snaglt Studio 7

» Many systems now include both CLI and GUI interfaces
> Microsoft Windows is GUI with CLI “command” shell
> Apple Mac 0S X is “Aqua” GUI interface with UNIX kernel underneath Ubuntu GENOME
» Unix and Linux have CLI with optional GUI interfaces (CDE, KDE, GNOME)

All apps +

S B<N EFEoN-IF N E

Bear-:h the web and Wind:

Mac OS X PROS=E380Fs B8-O0008O@° © 20

OS Interfaces (GUI

Touch Interfaces

Game GCentar * App Stare Tivitter Insiagram

D-Day Dead Trigge

N\ g R

Dra Earth

Melodies Google+ Google Maps

Google Drive eBay Hangouts Bank

System Calls

» Programming interface to the services provided by the OS
» Typically written in a high-level language (C or C++)

» Mostly accessed by programs via a high-level Application Programming Interface (API)
rather than direct system call use

» Three most common APIs are
» Win32 API for Windows
» POSIX API for POSIX-based systems
» Java API for the Java virtual machine (JVM)

System Call for Copying a File Content

source file »| destination file

é Example System Call Sequence N

Acquire input file name
Write prompt to screen
Accept input
Acquire output file name
Write prompt to screen
Accept input
Open the input file
if file doesn't exist, abort
Create output file
if file exists, abort
Loop
Read from input file
Write to output file
Until read fails
Close output file
Write completion message to screen
Terminate normally)

.

System Call for Creating a Process

Create a Process

Calls an API function called CreateProcess()

CreateProcess|()

Make a System call

NTCreateProcess()

Standard API Example

» Below is an example of a standard API for a read() function in UNIX and Linux

» On a successful read, the number of bytes read is returned

» A return value of 0 indicates end of file

» If an error occurs, read() returns -1

»0n Unix-like systems, unistd.h is made up of system call wrapper functions [API] such as read and write.

» File Descriptor or fd is an integer number that uniquely represents an opened file in operating system.

#include <unistd.h>

ssilze € read{int fd, wvoid *buf, size_ t count)
I | | | | |
return function paramaters
value name

System Call Implementation

» The system call interface invokes the intended system call in OS kernel and returns status of
the system call and any return values

» The caller needs know nothing about how the system call is implemented

» Just needs to obey APl and understand what OS will do as a result call

» Most details of OS interface are hidden from the programmer by API

user application
open ()
user

mode

system call interface ——

kernel
mode A

| open ()
Implementation

i » of open ()
system call

m

Types of System Calls

» There are different types of System Calls —

> Process Control contrel

» File Manipulation Ble aton

» Device Manipulation

» Information Maintenance D

» Communications v

> Protection Mo
Communication
Protection

Windows and

Windows

CreateProcess ()
ExitProcess{()
WaitForSingleObject ()

CreateFile()
ReadFile()
WriteFile()
CloseHandle()

SetConsoleMode ()
ReadConscle{)
WriteConsole()

GetCurrentProcessID()
SetTimer ()
Sleep()

CreatePipe()
CreateFileMapping()
MapViewOfFile()

SetFileSecurity()

InitlializeSecurityDescriptor ()
SetSecurityDescriptorGroup()

Unix

fork()
exit()
wait()

open()
read()
write()
close()

ioctl()
read ()
write()

getpid ()
alarm()
sleep()

pipe)
shmget ()
mmap ()

chmod ()
umask ()
chown()

Unix APIs for System Calls

Types of System Calls

Process Control File Management
» create and terminate process » create file/directory
» end, abort » delete
> load, execute > read
> get and set process attributes > write
: . » close

»wait for time
> it t, si | nt > move

wait event, signal eve > copy

» allocate and free memory
» dump memory if error

Types of System Calls

Device Management Information Maintenance
» request a resource (device) » getting the number of users
» These devices can be physical like disk, memory or > time
virtual like file % date
» If the device is not available, the process has to

» operating system version
» amount of free disk space
» getting memory dumps

wait
» release a resource (device)

» Once the process is done working with the device,
it should release it so others can use it

> read
> write

Types of System Calls

Communication Protection
» getting host id » set permission
» getting process id » get permission
» open connection » allow user
» close connection » deny user

» accept connection
» read message
» write message

System Programs

> System programs provide a convenient environment for program development and execution.

»Most users’ view of the operation system is defined by system programs, not the actual system calls

File manipulation
» Create, delete, copy, rename, print, list, and manipulate files and directories

Status information
» Some ask the system for info - date, time, amount of available memory, disk space, number of users
» Others provide detailed performance, logging, and debugging information
» Typically, these programs format and print the output to the terminal or other output devices

File modification

» Text editors to create and modify files
» Special commands to search the contents of files or perform transformations of the text

Programming-language support
> Compilers, assemblers, debuggers and interpreters are sometimes provided

Program loading and execution-
» loaders, relocatable loaders, debugging systems, etc

System Programs

Communications

» Provide the mechanism for creating virtual connections among processes, users, and computer systems

> Allow users to send messages to one another’s screens, browse web pages, send electronic-mail messages,
log in remotely, transfer files from one machine to another

Background Services
» Launch at boot time
» Provide facilities like disk checking, process scheduling, error logging, printing
» Run in user context not kernel context
» Known as services, subsystems, daemons
Application programs
» Don’t pertain to system
» Run by users
» Not typically considered part of OS
» Launched by command line, mouse click, finger poke

Operating System Structure

» General-purpose OS is very large program
» Various ways to structure ones

» Simple structure
» Layered

» Microkernel

» Modules

» Hybrid

Operating System Structure: Simple Structure

» MS-DOS — written to provide the most functionality in the =
least space application program

» Not divided into modules

» interfaces and levels of functionality are not well
separated

»Apple PRODOS, and Apple Macintosh, are single-
tasking.

»0S/2 and different versions of Unix and Microsoft
Windows are multitasking.

»resident program: It is a program that is always present ROM BIOS device drivers
in the computer's memory, thus being "resident".

resident system program

Operating System Structure: Layered structure

Windows NT

layer N
user interface

» The operating system is divided into a number of layers
(levels), each built on top of lower layers. The bottom layer
(layer 0), is the hardware; the highest (layer N) is the user
interface.

layer 1

layer 0
hardware

»With modularity, layers are selected such that each uses
functions (operations) and services of only lower-level layers

Operating System Structure: Microkernel structure

Minix 3 OS - Unix-like operating system.

» Moves as much from the kernel into user space

» Communication takes place between user modules using message passing
Benefits:

» Easier to extend a microkernel

» Easier to port the operating system to new architectures

» More reliable

» More secure

Detriments:

» Performance overhead of user space to kernel space communication

Operating System Structure: Microkernel structure

Application File Device user
Program System Driver mode
PAS A N N
messages i i messages]
Interprocess RSO cPU kernel
Communication managment scheduling mode
4 microkernel 4 n
v v
hardware

Operating System Structure: Modules

» Many modern operating systems implement loadable kernel
modules

» Uses object-oriented approach

» Each core component is separate

» Each talks to the others over known interfaces

» Each is loadable as needed within the kernel

»Linux, Solaris, etc.
device and
bus drivers
miscellaneous
modules

scheduling
classes

core Solaris
kernel

STREAMS
modules

Solaris Modular Approach

loadable
system calls

executable
formats

Operating System Structure: Hybrid

» Most modern operating systems are actually not one pure model
»Hybrid combines multiple approaches to address performance, security, usability
» Linux and Solaris kernels are monolithic, plus modular for dynamic loading of functionality
»Windows is mostly monolithic, plus microkernels for different subsystem personalities

» Apple Mac OS X hybrid, layered, Aqua Ul plus Cocoa programming environment

graphical user interface feuE

»Mach: For parallel programming

application environments and services

kernel environment

Mac OS X structure

BSD

Mach

_ 1/O kit kernel extensions I

