
Operating System Structure
CHAPTER 2

Outline

Operating system services
User and operating system-interface
System calls
System programs
Operating system structures

OS Services

OS Services
Operating systems provide an environment for execution of programs and services to programs and users
 Services provided by the OS can be:
 User interface - Command-Line (CLI), Batch, Graphics User Interface (GUI)
 Program execution - Load a program into memory and run that program
 I/O operations - Interaction with I/O devices
 File-system manipulation - Aids programs to read and write files and directories
 Communications – Helps processes exchange information with each other
 Error detection – Detects and corrects errors for reliable computing
Some other Services provided by the OS for efficient operations can be :
 Resource allocation – Allocates resources to multiple jobs, e.g., CPU cycles, I/O devices
 Accounting – Tracks usage of resources for billing users for resource usage purposes
 Protection and security – Protect and secure multiuser environment
 Protection involves ensuring that all access to system resources is controlled
 Security of the system from outsiders requires user authentication and extends to defending external I/O devices

from invalid access attempts

OS Interfaces
CLI (Command Line Interface)

 CLI or command interpreter allows direct command entry

 Sometimes implemented in kernel, sometimes by systems program

 Can have multiple flavors implemented – shells, e.g., C Shell, Bourne Shell. A shell is a

user interface for access to an operating system's services.

Works in two ways

 Fetches a command from user and executes it

 loads a program in the memory and executes it
rm file.txt

OS Interfaces
GUI (Graphical User Interface)

 User-friendly desktop interface
 Usually mouse, keyboard, and monitor
 Icons represent files, programs, actions, etc.
 Invented at Xerox PARC

Many systems now include both CLI and GUI interfaces
Microsoft Windows is GUI with CLI “command” shell
 Apple Mac OS X is “Aqua” GUI interface with UNIX kernel underneath
 Unix and Linux have CLI with optional GUI interfaces (CDE, KDE, GNOME)

Ubuntu

Windows

Mac OS X

GENOME

OS Interfaces (GUI)
Touch Interfaces

…

System Calls
 Programming interface to the services provided by the OS

 Typically written in a high-level language (C or C++)

Mostly accessed by programs via a high-level Application Programming Interface (API)
rather than direct system call use

Three most common APIs are
Win32 API for Windows
 POSIX API for POSIX-based systems
 Java API for the Java virtual machine (JVM)

System Call for Copying a File Content

System Call for Creating a Process

Create a Process

CreateProcess()

NTCreateProcess()

Calls an API function called CreateProcess()

Make a System call

Standard API Example
 Below is an example of a standard API for a read() function in UNIX and Linux

 On a successful read, the number of bytes read is returned

 A return value of 0 indicates end of file

 If an error occurs, read() returns −1

On Unix-like systems, unistd.h is made up of system call wrapper functions [API] such as read and write.

File Descriptor or fd is an integer number that uniquely represents an opened file in operating system.

System Call Implementation
 The system call interface invokes the intended system call in OS kernel and returns status of
the system call and any return values
 The caller needs know nothing about how the system call is implemented
 Just needs to obey API and understand what OS will do as a result call
Most details of OS interface are hidden from the programmer by API

Types of System Calls
 There are different types of System Calls
 Process Control
 File Manipulation
 Device Manipulation
 Information Maintenance
 Communications
 Protection

Windows and Unix APIs for System Calls

Types of System Calls
Process Control
 create and terminate process
 end, abort
 load, execute
 get and set process attributes
wait for time
 wait event, signal event
 allocate and free memory
 dump memory if error

File Management
 create file/directory
 delete
 read
 write
 close
move
 copy

Types of System Calls
Device Management
 request a resource (device)
 These devices can be physical like disk, memory or

virtual like file
 If the device is not available, the process has to

wait

 release a resource (device)
 Once the process is done working with the device,

it should release it so others can use it

 read
 write

Information Maintenance
 getting the number of users
 time
 date
 operating system version
 amount of free disk space
 getting memory dumps

Types of System Calls
Communication
 getting host id
 getting process id
 open connection
 close connection
 accept connection
 read message
 write message

Protection
 set permission
 get permission
 allow user
 deny user

System Programs
 System programs provide a convenient environment for program development and execution.

Most users’ view of the operation system is defined by system programs, not the actual system calls

File manipulation
 Create, delete, copy, rename, print, list, and manipulate files and directories

Status information
 Some ask the system for info - date, time, amount of available memory, disk space, number of users
 Others provide detailed performance, logging, and debugging information
 Typically, these programs format and print the output to the terminal or other output devices

File modification
 Text editors to create and modify files
 Special commands to search the contents of files or perform transformations of the text

Programming-language support
 Compilers, assemblers, debuggers and interpreters are sometimes provided

Program loading and execution-
 loaders, relocatable loaders, debugging systems, etc

System Programs
Communications
 Provide the mechanism for creating virtual connections among processes, users, and computer systems
 Allow users to send messages to one another’s screens, browse web pages, send electronic-mail messages,

log in remotely, transfer files from one machine to another
Background Services
 Launch at boot time
 Provide facilities like disk checking, process scheduling, error logging, printing
 Run in user context not kernel context
 Known as services, subsystems, daemons

Application programs
 Don’t pertain to system
 Run by users
 Not typically considered part of OS
 Launched by command line, mouse click, finger poke

Operating System Structure
 General-purpose OS is very large program

 Various ways to structure ones

 Simple structure

 Layered

Microkernel

Modules

 Hybrid

Operating System Structure: Simple Structure
MS-DOS – written to provide the most functionality in the
least space
 Not divided into modules
 interfaces and levels of functionality are not well
separated
Apple PRODOS, and Apple Macintosh, are single-
tasking.
OS/2 and different versions of Unix and Microsoft
Windows are multitasking.
resident program: It is a program that is always present
in the computer's memory, thus being "resident".

Operating System Structure: Layered structure

Windows NT

 The operating system is divided into a number of layers
(levels), each built on top of lower layers. The bottom layer
(layer 0), is the hardware; the highest (layer N) is the user
interface.

With modularity, layers are selected such that each uses
functions (operations) and services of only lower-level layers

Operating System Structure: Microkernel structure
Minix 3 OS - Unix-like operating system.
Moves as much from the kernel into user space
 Communication takes place between user modules using message passing
Benefits:
 Easier to extend a microkernel
 Easier to port the operating system to new architectures
More reliable
More secure
Detriments:
 Performance overhead of user space to kernel space communication

Operating System Structure: Microkernel structure

Application
Program

File
System

Device
Driver

Interprocess
Communication

memory
managment

CPU
scheduling

messagesmessages

microkernel

hardware

user
mode

kernel
mode

Operating System Structure: Modules
Many modern operating systems implement loadable kernel
modules
 Uses object-oriented approach
 Each core component is separate
 Each talks to the others over known interfaces
 Each is loadable as needed within the kernel
Linux, Solaris, etc.

Solaris Modular Approach

Operating System Structure: Hybrid
Most modern operating systems are actually not one pure model
Hybrid combines multiple approaches to address performance, security, usability
Linux and Solaris kernels are monolithic, plus modular for dynamic loading of functionality
Windows is mostly monolithic, plus microkernels for different subsystem personalities
Apple Mac OS X hybrid, layered, Aqua UI plus Cocoa programming environment

graphical user interface
Aqua

application environments and services

kernel environment

Java Cocoa Quicktime BSD

Mach

I/O kit kernel extensions

BSD

Mac OS X structure

Mach: For parallel programming

