
Process Synchronization
CHAPTER 6



Producer Consumer Problem

Producer Consumer

Buffer

Produces the data Consumes the data

The producers and consumers must operate concurrently and without interfering with each other.
• The producers must wait if the buffer is full, and the consumers must wait if the buffer is empty.
• To solve the producer-consumer problem, various synchronization techniques can be used.



Producer Consumer Problem
 If the Producer does not know the size of the buffer, it will keep on producing the 
data that would result in a buffer overflow

 Similarly, if the Consumer does not know the size of the buffer, it will try to get 
the data from the buffer and would result in no data found exception.

 This is also called a Bounded Buffer Problem.

 To solve this problem, both producer and consumer are told the size of the buffer.

 If the Producer knows that the buffer is full, it will not produce data and wait

 If the Consumer knows that the buffer is empty, it will not get the data and wait



Process Synchronization
 Processes can execute concurrently

Concurrent access to shared data may result in data inconsistency

Maintaining data consistency requires mechanisms to ensure the orderly 
execution of cooperating processes

 Illustration of the problem:
Suppose that we wanted to provide a solution to the consumer-producer problem. 
We can do so by having an integer counter that keeps track of the number of items 
in the buffer.  Initially, the counter is set to 0. It is incremented by the producer 
after it produces a new buffer and is decremented by the consumer after it 
consumes a buffer.



Process Synchronization

int counter =0;

while (true) {
/* produce an item in next produced */ 

while (counter == BUFFER_SIZE) ; 

/* do nothing */ 

buffer[in] = next_produced; 

in = (in + 1) % BUFFER_SIZE; 

counter++; 

} 

Producer Consumer

while (true) {

while (counter == 0) 

; /* do nothing */ 

next_consumed = buffer[out]; 

out = (out + 1) % BUFFER_SIZE; 

counter--; 

/* consume the item in next consumed */ 

} 



Race Condition
 counter++ could be implemented as

register1 = counter
register1 = register1 + 1
counter = register1

 counter-- could be implemented as
register2 = counter
register2 = register2 - 1
counter = register2



Race Condition
 Consider this execution interleaving with “count = 5” initially:

S0: producer execute register1 = counter         {register1 = 5}
S1: producer execute register1 = register1 + 1   {register1 = 6} 

S2: consumer execute register2 = counter         {register2 = 5} 
S3: consumer execute register2 = register2 – 1   {register2 = 4} 
S4: producer execute counter = register1         {counter = 6 } 
S5: consumer execute counter = register2         {counter = 4 }



Race Condition
 Consider this execution interleaving with “count = 5” initially:

S0: producer execute register1 = counter         {register1 = 5}
S1: producer execute register1 = register1 + 1   {register1 = 6} 
S2: consumer execute register2 = counter         {register2 = 5} 
S3: consumer execute register2 = register2 – 1   {register2 = 4} 
S4: producer execute counter = register1         {counter = 6 } 
S5: consumer execute counter = register2         {counter = 4 }

Counter should be 5, since we added 1 to it and subtracted 1 from it



Race Condition
 Consider this execution interleaving with “count = 5” initially:
S0: producer execute register1 = counter         {register1 = 5}
S1: producer execute register1 = register1 + 1   {register1 = 6} 
S2: consumer execute register2 = counter         {register2 = 5} 
S3: consumer execute register2 = register2 – 1   {register2 = 4} 
S4: producer execute counter = register1         {counter = 6 } 
S5: consumer execute counter = register2         {counter = 4 }

Counter should be 5, since we added 1 to it and subtracted 1 from it

This happened because processes are not synchronized properly and hence Race Condition
it's important to use appropriate synchronization mechanisms, to ensure that concurrent access to shared 

variables is properly coordinated



Critical Section Problem



Critical Section Problem
 Consider system of n processes {p0, p1, … pn-1}

 Each process has a critical section segment of code
 Process may be changing common variables, updating table, writing file, etc

When one process is in the critical section, no other may be in its critical section

 Critical section problem is to design a protocol to solve this

 Each process must ask permission to enter a critical section in its entry section, 
perform its critical section tasks, release the critical section in its exit section, and 
then proceed to the remaining section.



Critical Section Problem
General structure of process Pi



Solution to Critical Section Problem
Mutual Exclusion - If process Pi is executing in its critical section, then no 
other processes can be executing in their critical sections
 Progress - If no process is executing in its critical section and there exist 
some processes that wish to enter their critical section, then the selection 
of the processes that will enter the critical section next cannot be 
postponed indefinitely. Processes must not stop each other indefinitely.
 Bounded Waiting - A bound must exist on the number of times that 
other processes are allowed to enter their critical sections after a process 
has made a request to enter its critical section and before that request is 
granted



Critical Section handling in OS
 Two approaches depending on if the kernel is preemptive or non-preemptive 
 Preemptive Scheduling– allows preemption of the process when running in kernel mode. It means 

the OS can take a CPU from one process and give it to another.

 Non-preemptive Scheduling– process runs until exits kernel mode, blocks, or voluntarily yields CPU. 
The OS can not take from it the CPU until the process finishes. 

 Essentially free of race conditions in kernel mode 



Peterson’s Solution



Hardware Synchronization
Many systems provide hardware support for implementing the critical section 
code.

 Protecting critical regions via locks

 Currently running code would execute without preemption

Modern machines provide special atomic hardware instructions
Atomic = non-interruptible

Either test memory word and set value

Or swap contents of two memory words



Hardware Synchronization
Test and Set Instructions

boolean test_and_set (boolean *target)

{

boolean rv = *target;

*target = TRUE;

return rv:

}



Hardware Synchronization

Test and Set Instructions
do {

while (test_and_set(&lock))
{

/* do nothing */ 
}
/* critical section */ 
lock = false; 
/* remainder section */ 

} while (true); 

boolean test_and_set (boolean *target)
{

boolean rv = *target; // these two are
*target = TRUE; // atomic
return rv;

}
// 1st time lock is False target is True rv is False
// 2nd time target is True rv is true

There is a global variable called lock = False handled by the OS



Hardware Synchronization
Compare and Swap Instructions
int compare_and_swap(int *M, int expected, int new_value) 

{ 

int temp = *M; 

if (*M == expected) 

*M = new_value; 

return temp;

} 



Hardware Synchronization
Compare and Swap Instructions

do {// So, 1st time 0!=0 No enter critical section
while (compare_and_swap(&lock, 0, 1) != 0)

{ 
/* do nothing */ 

}
/* critical section */ 
lock = 0; 
/* remainder section */ 

} while (true); 

int compare_and_swap(int *M, int expected, int new_value) 
{ 

int temp = *M; 
if (*M == expected)

*M = new_value; 
return temp;            

} 

1st Time
//so temp = 0 or F
// 0==0 yes
// *M = 1
// return temp ==0

2nd Time
//so temp = 1 or T
// return temp ==1



Mutex Locks
 Previous solutions are complicated and generally inaccessible to application programmers

 OS designers build software tools to solve critical section problem

 Simplest is mutex lock 

 Protect a critical section by first acquire() a lock then release() the lock

 Boolean variable indicating if lock is available or not

 Calls to acquire() and release() must be atomic

 Usually implemented via hardware atomic instructions

 But this solution requires busy waiting: This lock therefore called a spinlock

Spinlock keeps checking the lock (busy waiting), while mutex puts threads waiting for the lock into sleep 
(blocked). 

A busy-waiting thread wastes CPU cycles, while a blocked thread does not. 



Mutex Locks
acquire() {

while (!available) 

; /* busy wait */ 

available = false;; //once in the critical section

} 

release() {

available = true; 

} 

do { 

acquire lock

critical section

release lock 

remainder section 

} while (true);



Semaphores
 Synchronization tool that provides more sophisticated ways (than Mutex locks)  for process to 
synchronize their activities.

 Semaphore S – integer variable

 Can only be accessed via two indivisible (atomic) operations

 wait() and signal() also called P() and V() respectively [the letters come from the Dutch words 
Probeer (try) and Verhoog (increment)].

 Counting semaphore – integer value can range over an unrestricted domain

 Binary semaphore – integer value can range only between 0 and 1
 Same as a mutex lock



Semaphores
In 1965, Dijkstra proposed a new technique for managing concurrent processes. 

He used an integer variable to synchronize the progress of interacting processes. 

This variable is called a semaphore. It can have the value of 1 [1 printer] or more [many printers]. 

So it is a synchronizing tool and is accessed only through two low standard atomic operations, 
wait and signal designated by P(S) and V(S) respectively [From the Dutch words Probeer (try) 
and Verhoog (increment)].

In simple words, the semaphore is a variable that can hold only a non-negative Integer value, 
shared between all the threads, with operations wait and signal, which work as follow:

P(S): if S >= 1 then S := S - 1 else <block and enqueue the process>; 
V(S): if <some process is blocked on the queue> then <unblock a process> else S 
:= S + 1;



Wait and Signal Operations
Wait: This operation decrements the value of its argument 
S, as soon as it would become >=1. 

This Operation helps you to control the entry of a task into 
the critical section. 

In the case of the negative or zero value, no operation is 
executed.

wait(S)
{ 

while (S<=0);//Atomic
S--;                //Operations

}
Note: When one process modifies the value of a 
semaphore, no other process can simultaneously modify 
that same semaphore's value. 

Signal: Increments the value of its argument S, as there is 
no more process blocked on the queue. 

This Operation is used to control the exit of a task from the 
critical section. 

signal(S)
{
S++;
}

All modifications to the integer value of semaphore in the 
wait() and signal() operations must be executed 
indivisibly.

wait and signal controls the number of processes entering 
and existing a critical section.



Reader Writer Problem
 A data set is shared among a number of concurrent processes
 Readers – only read the data set; they do not perform any updates

Writers   – can both read and write

 Problem – allow multiple readers to read at the same time
 Only one single writer can access the shared data at the same time

 Several variations of how readers and writers are considered

Shared Data
 Data set



Reader Writer Problem



First Solution: mutex = 1. 

This solution allows only one reader or one writer to access shared resources.



Second Solution: 

This solution allows many readers to access shared resources (race condition).



Third Solution: mutex != 1 and no race condition. This 
solution allows many readers to access shared resources.

Semaphore rw_mutex and mutex 
initialized to 1
Integer counter readers initialized to 0



Reader Writer Problem
do {

wait(rw_mutex); 

...
/* writing is performed 

... 

signal(rw_mutex); 

} while (true);

do {
wait(mutex);
read_count++;
if (read_count == 1) 

wait(rw_mutex); 

signal(mutex); 

...
/* reading is performed */ 

... 

wait(mutex);
read count--;
if (read_count == 0) 

signal(rw_mutex); 

signal(mutex); 

} while (true);

Writer Reader


