
College of Engineering
CSC 308 – Operating System

Project Proposal

Project to be undertaken
Our decision to concentrate on "System Deadlocks" as the subject of our research was motivated by the knowledge that many people are unaware of this problem and its possible repercussions. As operating systems improve and advance, multiprocessing's main goal is to efficiently utilise system resources while lowering user expenses. This is accomplished by dividing the resources across several jobs that are active at the same time. [1]
A system deadlock occurs when two or more processes are stalled while awaiting resources that they each have in reserve. As a result, none of the processes can go forward, which causes the system to stop entirely. System crashes, data loss, and decreased system performance are just a few serious outcomes that might result from system deadlocks. The performance and dependability of a computer system must thus be maintained through comprehending and resolving system deadlocks. [2]
Topics to be covered
A deadlock happens when several processes are impeded because they are all holding resources and waiting for others that are being held by separate processes. As shown in the figure below, with the first process holding a resource that the second process requires, and the second process holding a resource that the first process requires. Consequently, a stalemate results since neither process can access the resources it needs.

Figure 1: Deadlock problem
Our research project on system deadlocks will cover a variety of topics, including the history and model of deadlock, multithreaded applications, deadlock characterization, deadlock handling techniques, deadlock prevention, deadlock avoidance, deadlock detection, and recovery from system deadlock, to gain a better understanding of this issue in operating systems.

Investigation
Our research seeks to investigate the fundamental causes of system deadlocks, particularly the four required requirements, to address the problem of system deadlocks. During our investigation, we plan to distinguish between these situations in detail. [4] The four necessary conditions are as follows:
Mutual Exclusion: According to this requirement, at least one resource must be stored in a non-shareable mode, which restricts its use to a single process at a time. Because some resources, like printers, can only be accessed by one process at a time, this requirement is important.
Hold-and-wait: When a process retains one or more resources while waiting for other resources that are being held by other processes. This can result in a circle of waiting, which is one of the prerequisites for a stalemate.
No Preemption: This restriction prohibits forcefully removing resources from a process that is actively utilizing them. This implies that a process can only willingly surrender a resource, which might occasionally result in a stalemate.
Circular Wait: This state develops when a group of processes are all waiting on resources that one or more other processes in the group are holding. Due to the cyclic waiting pattern this causes, a deadlock may result.
Development
In the development section of our project, we will be researching efficient methods and techniques to prevent or at least minimize the impact of system deadlocks. To elaborate, below are several methods to handle or solve system deadlocks. [5]
Prevention: means creating the system in such a way that deadlocks are avoided. This can be accomplished by reducing the utilization of shared resources and employing algorithms such as Banker's algorithm.
Avoidance: includes searching for potential deadlocks before distributing resources to processes. This can be accomplished using a resource allocation graph or the implementation of a safety algorithm.
Detection and Recovery: This involves finding deadlocks and then recovering from them. This can be accomplished using timeout mechanisms or the implementation of a process termination algorithm.
Resource allocation: This entails distributing resources in a way that lessens the likelihood that deadlocks may develop. A priority-based resource allocation technique or dynamic resource allocation can be used to achieve this.
prevention and Recovery: To deal with deadlocks, a mix of preventative and recovery techniques is used. This may be accomplished by designing the system to avoid deadlocks and then having a backup plan of detection and recovery techniques available
Regardless of the method used, understanding the system and its needs, selecting the proper approaches, and weighing the trade-offs between efficiency and effectiveness are all necessary for efficient deadlock handling. Systems can increase their speed and reliability while lowering the possibility of downtime or system failure due to deadlocks by employing efficient deadlock management techniques.
Experimentation
We will use Ubuntu, a Linux-based operating system, to run the suitable application that illustrates deadlocks for our final research project report. Given that we are still novices learning about deadlocks, we created two small programs depicted in the images below to provide a quick overview of a simple system deadlock problem and a solution when run in Ubuntu. Additionally, the information we utilized to generate this proposal was made up by us to demonstrate our little understanding of the subject. Additionally, throughout the course of our project, information may be modified or altered.

Figure 2: expected experimentation
Expected results
After completing our research project, we aim to apply the knowledge we've learned in class to improve our knowledge of the C programming language while using Ubuntu and learn more about system deadlocks. Our goal is to create an intuitive approach that avoids system deadlocks, which will enhance our capacity to manage deadlocks effectively and draw attention to the issue with operating systems. To assist students better comprehend system deadlocks, we will examine existing system issues, acquire knowledge about efficient remedies, and put new strategies into practice using visual aids and engaging teaching techniques.
Final form of the project
We are expecting to finish a study report and a PowerPoint presentation for our research assignment. There will be an abstract, a summary, an introduction, a discussion, results, a conclusion, recommendations, references, and appendices in both the report and the presentation. Each, member in the group will take a specific part to manage depending on their skills and preferences. In addition, we will support our explanations with pertinent examples, figures, photos, and tables to make sure that our audience thoroughly understand the contents of the report and presentation. Our intention is to explain our study topic on system deadlocks in a simple and succinct manner.
References

E. R. S. BANGER, "Multiprocessor Operating System: Examples, Types, Advantages, & Feature!," 6 February 2023. [Online]. Available: https://digitalthinkerhelp.com/what-is-multiprocessoroperating-system-and-its- examples/. [Accessed 22 April 2023].
A. Sugandhi, "What is Deadlock in Operating System (OS)?," 23 January 2023. [Online]. Available: https://www.knowledgehut.com/blog/web-development/deadlock- in-os. [Accessed 22 April 2023].
P. Jain, "Deadlock and method for handling deadlock," 5 October 2018. [Online]. Available:
https://www.includehelp.com/operating-systems/deadlock-and-method-for- handlingdeadlock.aspx. [Accessed 22 April 2023].
A. AfterAcademy, "What is Deadlock and what are its four necessary conditions?," 8 November 2019. [Online]. Available: https://afteracademy.com/blog/what-is-deadlock- and-what-are-its-fournecessary-conditions/. [Accessed 22 April 2023].

H. Brijwasi, "What is Deadlock in OS: Handling, Prevention, Avoidance," 17 March 2023. [Online]. Available: https://er.yuvayana.org/what-is-deadlock-in-os-handling- prevention-avoidance/. [Accessed 22 April 2023].


