
Processes
CHAPTER 3

Outline

Introduction to process concept
Process scheduling
Operations on the processes
Inter-process communication

Processes
 A Process is a program in execution; process execution must

progress in a sequential fashion

 A Process has multiple parts
 Current activity including program counter, processor registers

 Stack containing temporary data

 Function parameters, local variables

 Heap containing memory dynamically allocated during run time

 Data section containing global variables

 The program code, also called the text section

Processes
 Program is a passive entity stored on disk (executable file), the process is

active

 Program becomes process when executable file loaded into memory

 Execution of program started via GUI mouse clicks, command line entry of its
name, etc.

 One program can be several processes
 Consider multiple users executing the same program

 For example running multiple instances of Google Chrome

Process States
 As a process executes, it changes state
 new: The process is being created

 running: Instructions are being executed

 waiting: The process is waiting for some event to occur

 ready: The process is waiting to be assigned to a processor

 terminated: The process has finished execution

Process States

Process Control Block
 Information associated with each process also called task

control block
 Process state – running, waiting, etc.
 Process number is its ID for the OS
 Program counter – location of instruction to next execute
 CPU registers – contents of all process registers
 CPU scheduling info- priorities, scheduling queue pointers
 Memory-management info – memory allocated to the process
 Accounting info – CPU used, clock time elapsed since the start, etc.
 I/O status information – I/O devices allocated to the process, list

of open files

Process Scheduling
 In a single processor environment, managing the processing time of the processor is very important.

 Processes waiting for a long time to process using CPU is not a good idea.

 All processes should be allowed to use the processor to complete their tasks.

 Better process management, better the performance of the machine.

Process Scheduling

Maximize CPU use, quickly switch processes onto CPU for
time-sharing

 Process scheduler selects among available processes for the
next execution on CPU

Maintains scheduling queues of processes
 Job queue – set of all processes in the system
 Ready queue – set of all processes residing in main memory,

ready and waiting to execute
Device queues – a set of processes waiting for an I/O device
 Processes migrate among the various queues

Process Scheduling
 In a single processor environment different processes might wait for their turn.

 Since one process is processed at a time.

 If there are several processes waiting for processing, a technique is required to
process them.

 Processes are scheduled to be processed.

 The part of OS that schedules the processes is called a Scheduler.

 Algorithm followed by Scheduler is Scheduling Algorithm.

Schedulers
 Short-term scheduler (or CPU scheduler) – selects which process should be

executed next and allocates CPU
 Sometimes the only scheduler in a system
 Short-term scheduler is invoked frequently (milliseconds) and (must be fast)

 Long-term scheduler (or job scheduler) – selects which processes should
be brought into the ready queue
 Long-term scheduler is invoked infrequently (seconds, minutes) and (may be

slow)

Schedulers

 Processes can be described as either:

 I/O-bound process – spends more time doing I/O than computations

 CPU-bound process – spends more time doing computations;

Context Switch

 When the CPU switches to another process, the system must save
the state of the old process and load the saved state for the new
process via a context switch

 Context of a process represented in the PCB

 Context-switch time is overhead; the system does no useful work
while switching
 The more complex the OS and the PCB, the longer the context switch

 Time dependent on hardware support
 Some hardware provides multiple sets of registers per CPU, multiple contexts loaded

at once

Process Operations
 There are several operations on the processes

 Most common ones are
 Process Creation
 Process Termination

Process Operations

Tree of Processes in Linux

init
pid = 1

sshd
pid = 3028

login
pid = 8415

kthreadd
pid = 2

sshd
pid = 3610

pdflush
pid = 200

khelper
pid = 6

tcsch
pid = 4005

emacs
pid = 9204

bash
pid = 8416

ps
pid = 9298

bash: unix shell
sshd: provide secure encrypted communications
ps: process status
Emacs is the text editor that runs on the Linux operating system
…

Process Operations: Process Creation
 Parent process create children processes, which, in turn, create other processes, forming a

tree of processes
 Processes are identified and managed via a process identifier (pid)
 Resource-sharing options
 Parent and children share all resources
 Children share a subset of parent’s resources
 Parent and child share no resources

 Execution options
 Parent and children execute concurrently
 Parent waits until children terminate

 Address space: How RAM is used?
 Child duplicate of the parent
 Child has a program loaded into it

 UNIX examples
 fork() is a system call that creates a new process
 exec() is a system call used to replace the current process image with a new process image

Process Operations
Process Termination

 Process executes the last statement and then asks the operating system to delete
it using the exit() system call.
 Returns status data from child to parent (via wait())
 Process’ resources are deallocated by the operating system

 Parent may terminate the execution of children’s processes using the abort()
system call. Some reasons for doing so:
 Child has exceeded allocated resources
 Task assigned to a child is no longer required
 The parent is exiting and the operating system does not allow a child to continue if its

parent terminates

Process Operations: Process Termination
 Some operating systems do not allow child to exists if its parent has terminated. If a process

terminates, then all its children must also be terminated.
 Cascading termination. All children, grandchildren, etc. are terminated.
 The termination is initiated by the operating system.

 The parent process may wait for termination of a child process by using the wait() system call.
The call returns status information and the pid of the terminated process

 If no parent waiting (did not invoke wait()) process is a zombie: it is dead process but no one is
taking it. In general, it is the result of a bad program. Use the command ‘top’ in Linux to see
them.

 If parent terminated without invoking wait , process is an orphan. Use the following command
to see them # ps -elf | head -1; ps -elf | awk '{if ($5 == 1 && $3 != "root") {print $0}}' | head

 The UNIX nohup command allows a child to continue executing after its parent has exited.

Inter-Process Communication (IPC)
 Processes within a system may be independent or cooperating
 Cooperating process can affect or be affected by other processes
 Reasons for cooperating processes:
 Information sharing
 Computation speedup
 Modularity
 Convenience

 Cooperating processes need inter-process communication (IPC)
 Shared memory
 Message passing

Inter-Process Communication (IPC)

Message passing shared memory

Inter-Process Communication (IPC)
Shared Memory
 An area of memory shared among the processes that wish to communicate
 The communication is under the control of the users processes not the operating

system.
 Major issues is to provide mechanism that will allow the user processes to

synchronize their actions when they access shared memory.

Inter-Process Communication (IPC)
Message Passing
 Mechanism for processes to communicate and to synchronize their actions
 Message system – processes communicate with each other without resorting to

shared variables
 IPC facility provides two operations:
 send(message)
 receive(message)

 The message size is either fixed or variable

Inter-Process Communication (IPC)
Message Passing
 If processes P and Q wish to communicate, they need to:
 Establish a communication link between them
 Exchange messages via send/receive

 Implementation issues:
 How are links established?
 Can a link be associated with more than two processes?
 How many links can there be between every pair of communicating processes?
 What is the capacity of a link?
 Is the size of a message that the link can accommodate fixed or variable?
 Is a link unidirectional or bi-directional?

Inter-Process Communication (IPC)
Message Passing
 Implementation of communication link
 Physical:
 Shared memory
 Hardware bus
 Network

 Logical:
 Direct or indirect
 Synchronous or asynchronous
 Automatic or explicit buffering

Inter-Process Communication (IPC)
Message Passing (Direct Communication)
 Processes must name each other explicitly:
 send (P, message) – send a message to process P
 receive(Q, message) – receive a message from process Q

 Properties of communication link
 Links are established automatically
 A link is associated with exactly one pair of communicating processes
 Between each pair there exists exactly one link
 The link may be unidirectional, but is usually bi-directional

Inter-Process Communication (IPC)
Message Passing (Indirect Communication)
 Messages are directed and received from mailboxes (also referred to as ports)
 Each mailbox has a unique id
 Processes can communicate only if they share a mailbox

 Properties of communication link
 Link established only if processes share a common mailbox
 A link may be associated with many processes
 Each pair of processes may share several communication links
 Link may be unidirectional or bi-directional

Inter-Process Communication (IPC)
Message Passing (Indirect Communication)
 Operations
 create a new mailbox (port)
 send and receive messages through mailbox
 destroy a mailbox

 Primitives are defined as:
 send(A, message) – send a message to mailbox A
 receive(A, message) – receive a message from mailbox A

Inter-Process Communication (IPC)
Message Passing (Indirect Communication)
 Mailbox sharing
 P1, P2, and P3 share mailbox A
 P1, sends; P2 and P3 receive
 Who gets the message?

 Solutions
 Allow a link to be associated with at most two processes
 Only one process is allowed to execute the receive operation at a given time
 Allow the system to select arbitrarily the receiver. Sender is notified who the receiver was.

Inter-Process Communication (IPC)
Message Passing (Synchronization)
 Message passing may be either blocking or non-blocking
 Blocking is considered synchronous
 Blocking send -- the sender is blocked until the message is received
 Blocking receive -- the receiver is blocked until a message is available

 Non-blocking is considered asynchronous
 Non-blocking send -- the sender sends the message and continue
 Non-blocking receive -- the receiver receives:

 Different combinations possible

Inter-Process Communication (IPC)
Message Passing (Buffering)
 Queue of messages attached to the link.
 implemented in one of three ways

1. Zero capacity – no messages are queued on a link. Sender must wait for receiver
2. Bounded capacity – finite length of n messages. Sender must wait if link full
3. Unbounded capacity – infinite length. Sender never waits

