
Processes
CHAPTER 3

Outline

Introduction to process concept
Process scheduling
Operations on the processes
Inter-process communication

Processes
 A Process is a program in execution; process execution must

progress in a sequential fashion

 A Process has multiple parts
 Current activity including program counter, processor registers

 Stack containing temporary data

 Function parameters, local variables

 Heap containing memory dynamically allocated during run time

 Data section containing global variables

 The program code, also called the text section

Processes
 Program is a passive entity stored on disk (executable file), the process is

active

 Program becomes process when executable file loaded into memory

 Execution of program started via GUI mouse clicks, command line entry of its
name, etc.

 One program can be several processes
 Consider multiple users executing the same program

 For example running multiple instances of Google Chrome

Process States
 As a process executes, it changes state
 new: The process is being created

 running: Instructions are being executed

 waiting: The process is waiting for some event to occur

 ready: The process is waiting to be assigned to a processor

 terminated: The process has finished execution

Process States

Process Control Block
 Information associated with each process also called task

control block
 Process state – running, waiting, etc.
 Process number is its ID for the OS
 Program counter – location of instruction to next execute
 CPU registers – contents of all process registers
 CPU scheduling info- priorities, scheduling queue pointers
 Memory-management info – memory allocated to the process
 Accounting info – CPU used, clock time elapsed since the start, etc.
 I/O status information – I/O devices allocated to the process, list

of open files

Process Scheduling
 In a single processor environment, managing the processing time of the processor is very important.

 Processes waiting for a long time to process using CPU is not a good idea.

 All processes should be allowed to use the processor to complete their tasks.

 Better process management, better the performance of the machine.

Process Scheduling

Maximize CPU use, quickly switch processes onto CPU for
time-sharing

 Process scheduler selects among available processes for the
next execution on CPU

Maintains scheduling queues of processes
 Job queue – set of all processes in the system
 Ready queue – set of all processes residing in main memory,

ready and waiting to execute
Device queues – a set of processes waiting for an I/O device
 Processes migrate among the various queues

Process Scheduling
 In a single processor environment different processes might wait for their turn.

 Since one process is processed at a time.

 If there are several processes waiting for processing, a technique is required to
process them.

 Processes are scheduled to be processed.

 The part of OS that schedules the processes is called a Scheduler.

 Algorithm followed by Scheduler is Scheduling Algorithm.

Schedulers
 Short-term scheduler (or CPU scheduler) – selects which process should be

executed next and allocates CPU
 Sometimes the only scheduler in a system
 Short-term scheduler is invoked frequently (milliseconds) and (must be fast)

 Long-term scheduler (or job scheduler) – selects which processes should
be brought into the ready queue
 Long-term scheduler is invoked infrequently (seconds, minutes) and (may be

slow)

Schedulers

 Processes can be described as either:

 I/O-bound process – spends more time doing I/O than computations

 CPU-bound process – spends more time doing computations;

Context Switch

 When the CPU switches to another process, the system must save
the state of the old process and load the saved state for the new
process via a context switch

 Context of a process represented in the PCB

 Context-switch time is overhead; the system does no useful work
while switching
 The more complex the OS and the PCB, the longer the context switch

 Time dependent on hardware support
 Some hardware provides multiple sets of registers per CPU, multiple contexts loaded

at once

Process Operations
 There are several operations on the processes

 Most common ones are
 Process Creation
 Process Termination

Process Operations

Tree of Processes in Linux

init
pid = 1

sshd
pid = 3028

login
pid = 8415

kthreadd
pid = 2

sshd
pid = 3610

pdflush
pid = 200

khelper
pid = 6

tcsch
pid = 4005

emacs
pid = 9204

bash
pid = 8416

ps
pid = 9298

bash: unix shell
sshd: provide secure encrypted communications
ps: process status
Emacs is the text editor that runs on the Linux operating system
…

Process Operations: Process Creation
 Parent process create children processes, which, in turn, create other processes, forming a

tree of processes
 Processes are identified and managed via a process identifier (pid)
 Resource-sharing options
 Parent and children share all resources
 Children share a subset of parent’s resources
 Parent and child share no resources

 Execution options
 Parent and children execute concurrently
 Parent waits until children terminate

 Address space: How RAM is used?
 Child duplicate of the parent
 Child has a program loaded into it

 UNIX examples
 fork() is a system call that creates a new process
 exec() is a system call used to replace the current process image with a new process image

Process Operations
Process Termination

 Process executes the last statement and then asks the operating system to delete
it using the exit() system call.
 Returns status data from child to parent (via wait())
 Process’ resources are deallocated by the operating system

 Parent may terminate the execution of children’s processes using the abort()
system call. Some reasons for doing so:
 Child has exceeded allocated resources
 Task assigned to a child is no longer required
 The parent is exiting and the operating system does not allow a child to continue if its

parent terminates

Process Operations: Process Termination
 Some operating systems do not allow child to exists if its parent has terminated. If a process

terminates, then all its children must also be terminated.
 Cascading termination. All children, grandchildren, etc. are terminated.
 The termination is initiated by the operating system.

 The parent process may wait for termination of a child process by using the wait() system call.
The call returns status information and the pid of the terminated process

 If no parent waiting (did not invoke wait()) process is a zombie: it is dead process but no one is
taking it. In general, it is the result of a bad program. Use the command ‘top’ in Linux to see
them.

 If parent terminated without invoking wait , process is an orphan. Use the following command
to see them # ps -elf | head -1; ps -elf | awk '{if ($5 == 1 && $3 != "root") {print $0}}' | head

 The UNIX nohup command allows a child to continue executing after its parent has exited.

Inter-Process Communication (IPC)
 Processes within a system may be independent or cooperating
 Cooperating process can affect or be affected by other processes
 Reasons for cooperating processes:
 Information sharing
 Computation speedup
 Modularity
 Convenience

 Cooperating processes need inter-process communication (IPC)
 Shared memory
 Message passing

Inter-Process Communication (IPC)

Message passing shared memory

Inter-Process Communication (IPC)
Shared Memory
 An area of memory shared among the processes that wish to communicate
 The communication is under the control of the users processes not the operating

system.
 Major issues is to provide mechanism that will allow the user processes to

synchronize their actions when they access shared memory.

Inter-Process Communication (IPC)
Message Passing
 Mechanism for processes to communicate and to synchronize their actions
 Message system – processes communicate with each other without resorting to

shared variables
 IPC facility provides two operations:
 send(message)
 receive(message)

 The message size is either fixed or variable

Inter-Process Communication (IPC)
Message Passing
 If processes P and Q wish to communicate, they need to:
 Establish a communication link between them
 Exchange messages via send/receive

 Implementation issues:
 How are links established?
 Can a link be associated with more than two processes?
 How many links can there be between every pair of communicating processes?
 What is the capacity of a link?
 Is the size of a message that the link can accommodate fixed or variable?
 Is a link unidirectional or bi-directional?

Inter-Process Communication (IPC)
Message Passing
 Implementation of communication link
 Physical:
 Shared memory
 Hardware bus
 Network

 Logical:
 Direct or indirect
 Synchronous or asynchronous
 Automatic or explicit buffering

Inter-Process Communication (IPC)
Message Passing (Direct Communication)
 Processes must name each other explicitly:
 send (P, message) – send a message to process P
 receive(Q, message) – receive a message from process Q

 Properties of communication link
 Links are established automatically
 A link is associated with exactly one pair of communicating processes
 Between each pair there exists exactly one link
 The link may be unidirectional, but is usually bi-directional

Inter-Process Communication (IPC)
Message Passing (Indirect Communication)
 Messages are directed and received from mailboxes (also referred to as ports)
 Each mailbox has a unique id
 Processes can communicate only if they share a mailbox

 Properties of communication link
 Link established only if processes share a common mailbox
 A link may be associated with many processes
 Each pair of processes may share several communication links
 Link may be unidirectional or bi-directional

Inter-Process Communication (IPC)
Message Passing (Indirect Communication)
 Operations
 create a new mailbox (port)
 send and receive messages through mailbox
 destroy a mailbox

 Primitives are defined as:
 send(A, message) – send a message to mailbox A
 receive(A, message) – receive a message from mailbox A

Inter-Process Communication (IPC)
Message Passing (Indirect Communication)
 Mailbox sharing
 P1, P2, and P3 share mailbox A
 P1, sends; P2 and P3 receive
 Who gets the message?

 Solutions
 Allow a link to be associated with at most two processes
 Only one process is allowed to execute the receive operation at a given time
 Allow the system to select arbitrarily the receiver. Sender is notified who the receiver was.

Inter-Process Communication (IPC)
Message Passing (Synchronization)
 Message passing may be either blocking or non-blocking
 Blocking is considered synchronous
 Blocking send -- the sender is blocked until the message is received
 Blocking receive -- the receiver is blocked until a message is available

 Non-blocking is considered asynchronous
 Non-blocking send -- the sender sends the message and continue
 Non-blocking receive -- the receiver receives:

 Different combinations possible

Inter-Process Communication (IPC)
Message Passing (Buffering)
 Queue of messages attached to the link.
 implemented in one of three ways

1. Zero capacity – no messages are queued on a link. Sender must wait for receiver
2. Bounded capacity – finite length of n messages. Sender must wait if link full
3. Unbounded capacity – infinite length. Sender never waits

